StudierendeLehrende

Price Elasticity

Die Preiselastizität ist ein wirtschaftliches Konzept, das beschreibt, wie empfindlich die Nachfrage nach einem Gut auf Veränderungen des Preises reagiert. Sie wird oft als Verhältnis der prozentualen Änderung der nachgefragten Menge zu der prozentualen Änderung des Preises dargestellt. Mathematisch kann dies durch die Formel ausgedrückt werden:

Ed=%A¨nderung der nachgefragten Menge%A¨nderung des PreisesE_d = \frac{\%\text{Änderung der nachgefragten Menge}}{\%\text{Änderung des Preises}}Ed​=%A¨nderung des Preises%A¨nderung der nachgefragten Menge​

Ein Wert von Ed>1E_d > 1Ed​>1 zeigt eine elastische Nachfrage an, was bedeutet, dass Verbraucher stark auf Preisänderungen reagieren. Im Gegensatz dazu deutet ein Wert von Ed<1E_d < 1Ed​<1 auf eine unelastische Nachfrage hin, wobei die Verbraucher weniger empfindlich auf Preisänderungen reagieren. Wichtige Faktoren, die die Preiselastizität beeinflussen, sind die Verfügbarkeit von Substituten, die Notwendigkeit des Gutes und der Marktzeitraum, in dem die Preisänderung stattfindet.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Carnot-Kreisprozess

Der Carnot-Zyklus ist ein theoretisches Modell, das die maximal mögliche Effizienz einer Wärmekraftmaschine beschreibt, die zwischen zwei Temperaturreservoirs arbeitet. Der Zyklus besteht aus vier reversiblen Prozessen: zwei adiabatische (wärmeisolierte) und zwei isotherme (konstante Temperatur) Prozesse. Der effizienteste Betrieb einer Wärmekraftmaschine wird erreicht, wenn die Temperaturdifferenz zwischen dem heißen und dem kalten Reservoir maximiert wird. Die Effizienz η\etaη eines Carnot-Zyklus kann durch die folgende Formel ausgedrückt werden:

η=1−TcTh\eta = 1 - \frac{T_c}{T_h}η=1−Th​Tc​​

wobei TcT_cTc​ die Temperatur des kalten Reservoirs und ThT_hTh​ die Temperatur des heißen Reservoirs in Kelvin sind. Der Carnot-Zyklus ist von großer Bedeutung in der Thermodynamik, da er als Referenz für die Effizienz realer Maschinen dient und fundamental für das Verständnis von Energieumwandlungsprozessen ist.

Computational Finance Modeling

Computational Finance Modeling bezieht sich auf den Einsatz von mathematischen Modellen und algorithmen, um finanzielle Probleme zu analysieren und zu lösen. Diese Modelle nutzen verschiedene Techniken, darunter stochastische Prozesse, optimale Steuerung und numerische Methoden, um das Verhalten von Finanzmärkten und -instrumenten vorherzusagen. Ein häufiges Beispiel ist die Bewertung von Derivaten, wo Modelle wie das Black-Scholes-Modell zur Anwendung kommen, um den Preis von Optionen zu bestimmen.

Ein zentraler Aspekt ist die Simulation von möglichen zukünftigen Szenarien, was häufig mithilfe von Monte-Carlo-Methoden geschieht. Diese Methoden erlauben es, die Unsicherheit von Märkten zu quantifizieren und das Risiko von Investitionen zu bewerten. In der heutigen Zeit sind Computermodelle unverzichtbar für Investmentbanken, Hedgefonds und Portfolio-Management, da sie helfen, fundierte Entscheidungen auf der Grundlage von komplexen Datenanalysen zu treffen.

Verhaltensverzerrung

Behavioral Bias bezeichnet systematische Abweichungen von rationalem Denken und Entscheiden, die durch psychologische Faktoren beeinflusst werden. Diese Verzerrungen können das Verhalten von Individuen und Gruppen in wirtschaftlichen und finanziellen Kontexten erheblich beeinflussen. Zu den häufigsten Typen von Behavioral Bias gehören:

  • Überoptimismus: Die Tendenz, die eigenen Fähigkeiten oder die zukünftige Entwicklung von Investitionen zu überschätzen.
  • Bestätigungsfehler: Die Neigung, Informationen zu suchen oder zu interpretieren, die die eigenen Überzeugungen stützen, während gegenteilige Informationen ignoriert werden.
  • Verlustaversion: Die Vorstellung, dass der Schmerz eines Verlustes größer ist als die Freude über einen gleichwertigen Gewinn, was zu riskanten Entscheidungen führen kann.

Diese Biases können zu suboptimalen Entscheidungen führen, die nicht nur individuelle Investoren, sondern auch ganze Märkte betreffen. Ein besseres Verständnis von Behavioral Bias kann helfen, bewusstere Entscheidungen zu treffen und Risiken zu minimieren.

Phillips-Phase

Die Phillips Phase ist ein Konzept aus der Wirtschaftswissenschaft, das sich mit der Beziehung zwischen Inflation und Arbeitslosigkeit beschäftigt. Es basiert auf der Beobachtung, dass es oft eine inverse Beziehung zwischen diesen beiden Variablen gibt: Wenn die Arbeitslosigkeit niedrig ist, neigen die Löhne und damit auch die Preise dazu, zu steigen, was zu einer höheren Inflation führt. Umgekehrt kann eine hohe Arbeitslosigkeit zu einem Rückgang der Inflation oder sogar zu Deflation führen.

Diese Beziehung wurde erstmals von A.W. Phillips in den 1950er Jahren beschrieben und als Phillips-Kurve bekannt. Mathematisch kann dies durch die Gleichung

πt=πt−1−β(ut−u∗)\pi_t = \pi_{t-1} - \beta (u_t - u^*)πt​=πt−1​−β(ut​−u∗)

ausgedrückt werden, wobei πt\pi_tπt​ die Inflationsrate, utu_tut​ die Arbeitslosenquote und u∗u^*u∗ die natürliche Arbeitslosenquote darstellt. In der Phillips Phase wird diskutiert, wie sich diese Dynamik im Zeitverlauf ändern kann, insbesondere in Reaktion auf wirtschaftliche Schocks oder geldpolitische Maßnahmen.

Fibonacci-Haufenoperationen

Ein Fibonacci-Heap ist eine spezielle Art von Datenstruktur, die eine Sammlung von Heap-basierten Bäumen verwendet, um eine effiziente Umsetzung von Prioritätswarteschlangen zu ermöglichen. Die Hauptoperationen eines Fibonacci-Heaps sind Einfügen, Verschmelzen, Minimum Finden, Löschen und Decrease-Key.

  • Einfügen: Ein neuer Knoten wird erstellt und in die Wurzelliste des Heaps eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) erfolgt.
  • Minimum Finden: Der Zugriff auf das Minimum geschieht ebenfalls in O(1)O(1)O(1), da der Fibonacci-Heap eine Zeigerreferenz auf das Minimum behält.
  • Decrease-Key: Um den Wert eines Knotens zu verringern, wird der Knoten möglicherweise aus seinem aktuellen Baum entfernt und in einen neuen Baum eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) geschieht.
  • Löschen: Diese Operation erfordert zunächst die Durchführung einer Decrease-Key-Operation, gefolgt von einer Löschung des Minimums, und hat eine amortisierte Zeitkomplexität von O(log⁡n)O(\log n)O(logn).

Durch die Verwendung dieser Operationen kann der Fibonacci-Heap eine effiziente Handhabung von Prioritätswarteschlangen ermöglichen, besonders in Algorithmen wie Dijkstra

Prospect-Theorie

Die Prospect Theory ist ein Konzept aus der Verhaltensökonomie, das von Daniel Kahneman und Amos Tversky in den späten 1970er Jahren entwickelt wurde. Sie beschreibt, wie Menschen Entscheidungen unter Unsicherheit treffen, insbesondere wenn es um Gewinne und Verluste geht. Im Gegensatz zur traditionellen Erwartungsnutzentheorie postuliert die Prospect Theory, dass Menschen asymmetrisch auf Gewinne und Verluste reagieren: Sie empfinden Verluste als stärker und unangenehmer als Gewinne von gleicher Größe, was als Verlustaversion bekannt ist. Diese Theorie führt zu verschiedenen Verhaltensmustern, wie z.B. der Neigung, riskante Entscheidungen zu treffen, wenn es um potenzielle Verluste geht, während sie bei potenziellen Gewinnen oft konservativer agieren. Mathematisch wird die Prospect Theory durch eine Wertfunktion beschrieben, die steiler im Verlustbereich ist und eine konkave Form im Gewinnbereich hat, was die unterschiedliche Sensibilität für Gewinne und Verluste verdeutlicht.