StudierendeLehrende

Schottky Diode

Die Schottky Diode ist eine spezielle Art von Halbleiterdiode, die durch die Verbindung eines Halbleitermaterials, meist Silizium, mit einem Metall, wie Gold oder Platin, entsteht. Diese Diode ist bekannt für ihre schnelle Schaltgeschwindigkeit und niedrigen Vorwärtsspannungsabfall, der typischerweise zwischen 0,15 V und 0,45 V liegt, im Vergleich zu herkömmlichen Siliziumdioden, die einen Vorwärtsspannungsabfall von etwa 0,7 V aufweisen.

Ein wesentliches Merkmal der Schottky Diode ist die Schottky-Barriere, die sich an der Grenzfläche zwischen dem Metall und dem Halbleiter bildet. Diese Barriere ermöglicht eine effiziente Steuerung des Stromflusses in Durchlassrichtung und verhindert den Rückfluss in Sperrrichtung. Aufgrund ihrer Eigenschaften finden Schottky Dioden häufig Anwendung in Gleichrichterschaltungen, Schaltnetzteilen und Hochfrequenzanwendungen, wo hohe Geschwindigkeiten und geringe Verlustleistungen gefragt sind.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Eigenwertproblem

Das Eigenvalue Problem ist ein zentrales Konzept in der linearen Algebra und beschäftigt sich mit der Suche nach sogenannten Eigenwerten und Eigenvektoren einer Matrix. Gegeben sei eine quadratische Matrix AAA. Ein Eigenwert λ\lambdaλ und der zugehörige Eigenvektor v\mathbf{v}v erfüllen die Gleichung:

Av=λvA \mathbf{v} = \lambda \mathbf{v}Av=λv

Das bedeutet, dass die Anwendung der Matrix AAA auf den Eigenvektor v\mathbf{v}v lediglich eine Skalierung des Vektors um den Faktor λ\lambdaλ bewirkt. Eigenwerte und Eigenvektoren finden Anwendung in verschiedenen Bereichen, wie z.B. in der Stabilitätsanalyse, bei der Lösung von Differentialgleichungen sowie in der Quantenmechanik. Um die Eigenwerte zu bestimmen, wird die charakteristische Gleichung aufgestellt:

det(A−λI)=0\text{det}(A - \lambda I) = 0det(A−λI)=0

Hierbei ist III die Einheitsmatrix. Die Lösungen dieser Gleichung geben die Eigenwerte an, während die zugehörigen Eigenvektoren durch Einsetzen der Eigenwerte in die ursprüngliche Gleichung gefunden werden können.

Heisenbergsche Unschärferelation

Das Heisenbergsche Unschärfeprinzip ist ein fundamentales Konzept der Quantenmechanik, das besagt, dass es unmöglich ist, sowohl den Ort als auch den Impuls eines Teilchens mit beliebiger Präzision gleichzeitig zu bestimmen. Mathematisch wird dies durch die Beziehung ausgedrückt:

Δx⋅Δp≥ℏ2\Delta x \cdot \Delta p \geq \frac{\hbar}{2}Δx⋅Δp≥2ℏ​

Hierbei ist Δx\Delta xΔx die Unschärfe in der Position, Δp\Delta pΔp die Unschärfe im Impuls, und ℏ\hbarℏ ist das reduzierte Plancksche Wirkungsquantum. Dieses Prinzip hat tiefgreifende Implikationen für unser Verständnis der Natur, da es zeigt, dass die Realität auf quantenmechanischer Ebene nicht deterministisch ist. Stattdessen müssen wir mit Wahrscheinlichkeiten und Unschärfen arbeiten, was zu neuen Sichtweisen in der Physik und anderen Wissenschaften führt. In der Praxis bedeutet dies, dass je genauer wir den Ort eines Teilchens messen, desto ungenauer wird unsere Messung seines Impulses und umgekehrt.

Schrittmotor

Ein Stepper Motor ist ein spezieller Typ von Elektromotor, der in präzisen Positionierungsanwendungen eingesetzt wird. Im Gegensatz zu herkömmlichen Motoren dreht sich ein Stepper Motor in diskreten Schritten, was bedeutet, dass er sich nur um bestimmte Winkelpositionen bewegt. Diese Schritte ermöglichen eine exakte Steuerung der Position und Geschwindigkeit, was ihn ideal für Anwendungen wie 3D-Drucker, CNC-Maschinen und Robotik macht.

Die Funktionsweise beruht auf der magnetischen Anziehung von Spulen, die in einem bestimmten Muster aktiviert werden, um den Rotor schrittweise zu bewegen. Ein typisches Beispiel ist ein Motor mit 200 Schritten pro Umdrehung, der somit einen Schrittwinkel von 360200=1.8\frac{360}{200} = 1.8200360​=1.8 Grad pro Schritt hat. Diese hohe Präzision und Wiederholgenauigkeit machen Stepper Motoren zu einer beliebten Wahl in der modernen Automatisierungstechnik.

Cauchy-Integralformel

Die Cauchy-Integral-Formel ist ein zentrales Resultat der komplexen Analysis, das die Beziehung zwischen den Werten einer holomorphen Funktion und ihren Integralen über geschlossene Kurven beschreibt. Sie besagt, dass für eine holomorphe Funktion f(z)f(z)f(z) innerhalb und auf einer geschlossenen Kurve CCC sowie für einen Punkt aaa, der sich innerhalb von CCC befindet, die folgende Gleichung gilt:

f(a)=12πi∮Cf(z)z−a dzf(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} \, dzf(a)=2πi1​∮C​z−af(z)​dz

Die Formel hat mehrere wichtige Implikationen:

  • Sie ermöglicht die Berechnung von Funktionswerten aus Integralen.
  • Sie spielt eine entscheidende Rolle in der Theorie der Residuen und der Berechnung von Integralen.
  • Sie zeigt, dass der Wert einer holomorphen Funktion an einem Punkt vollständig durch ihre Werte auf einer umgebenden Kurve bestimmt ist.

Die Cauchy-Integral-Formel ist daher nicht nur theoretisch wichtig, sondern hat auch praktische Anwendungen in der Physik und Ingenieurwissenschaft.

Überschüssige Fluide

Supercritical Fluids sind Zustände von Materie, die bei bestimmten Druck- und Temperaturbedingungen entstehen, wenn ein Fluid über seine kritische Temperatur und seinen kritischen Druck hinaus erhitzt wird. In diesem Zustand zeigen die Flüssigkeit und das Gas die Eigenschaften beider Phasen, was zu einzigartigen Löslichkeitseigenschaften führt. Zum Beispiel können superkritische Fluide wie superkritisches Kohlendioxid als lösungsmittelähnlich betrachtet werden, während sie gleichzeitig die Diffusionseigenschaften von Gasen besitzen.

Die Anwendung von superkritischen Fluiden umfasst Bereiche wie die Extraktion von Pflanzenstoffen, die chemische Synthese und die Reinigung von Materialien. Ein bekanntes Beispiel ist die Verwendung von superkritischem CO₂ in der Kaffee-Entkoffeinierung, wo die Eigenschaften des Fluids es ermöglichen, Koffein selektiv zu extrahieren. Die Vorteile dieser Technologie liegen in der Umweltfreundlichkeit und der Effizienz des Prozesses, da keine schädlichen Lösungsmittel benötigt werden.

Arbitrage-Preistheorie

Die Arbitrage Pricing Theory (APT) ist ein Finanzmodell zur Bewertung von Vermögenswerten, das auf der Annahme basiert, dass der Preis eines Vermögenswerts durch verschiedene systematische Risikofaktoren bestimmt wird. Im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen einzelnen Risikofaktor berücksichtigt (Marktrendite), identifiziert die APT mehrere Faktoren, die die Renditen beeinflussen können, wie zum Beispiel Inflation, Zinssätze oder wirtschaftliches Wachstum.

Die APT postuliert, dass, solange Arbitrage möglich ist, die erwartete Rendite eines Vermögenswerts durch die folgende Gleichung beschrieben werden kann:

E(Ri)=Rf+β1⋅(E(R1)−Rf)+β2⋅(E(R2)−Rf)+…+βn⋅(E(Rn)−Rf)E(R_i) = R_f + \beta_1 \cdot (E(R_1) - R_f) + \beta_2 \cdot (E(R_2) - R_f) + \ldots + \beta_n \cdot (E(R_n) - R_f)E(Ri​)=Rf​+β1​⋅(E(R1​)−Rf​)+β2​⋅(E(R2​)−Rf​)+…+βn​⋅(E(Rn​)−Rf​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts iii, RfR_fRf​ der risikofreie Zinssatz, und E(Rj)E(R_j)E(Rj​) die erwartete Rendite des j-ten Risikofaktors, gewichtet durch die Sensitivität βj\beta_jβj​ des Vermögenswerts gegenüber diesem Faktor. Die Theorie ist besonders nützlich