StudierendeLehrende

Self-Supervised Learning

Self-Supervised Learning ist eine Form des maschinellen Lernens, bei der ein Modell lernt, ohne dass explizite, manuell beschriftete Daten benötigt werden. Stattdessen erstellt das Modell eigene Labels aus den vorhandenen Daten. Dies geschieht häufig durch das Lösen von Aufgaben, die auf den Daten selbst basieren, wie z.B. das Vorhersagen eines Teils der Eingabedaten aus den anderen Teilen. Ein populäres Beispiel ist die Bildverarbeitung, wo das Modell lernt, die fehlenden Teile eines Bildes vorherzusagen oder zu klassifizieren, indem es Merkmale aus den umgebenden Pixeln nutzt. Diese Methode hat den Vorteil, dass sie große Mengen unbeschrifteter Daten effektiv nutzen kann, was in vielen Anwendungsbereichen, wie der natürlichen Sprachverarbeitung oder Computer Vision, von Vorteil ist. Self-Supervised Learning kann als eine Brücke zwischen unüberwachtem und überwachtem Lernen betrachtet werden und hat in den letzten Jahren an Bedeutung gewonnen, da es die Leistung von Modellen in vielen Aufgaben erheblich verbessert hat.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dielektrischer Durchbruchsschwellenwert

Der Dielectric Breakdown Threshold bezeichnet die Spannung, bei der ein Isoliermaterial seine Fähigkeit verliert, elektrischen Strom zu blockieren, und stattdessen leitend wird. Dieser Effekt tritt auf, wenn die elektrische Feldstärke, die durch das Material wirkt, einen kritischen Wert überschreitet, was zu einer plötzlichen Zunahme des Stromflusses führt. Der Breakdown kann durch verschiedene Faktoren beeinflusst werden, einschließlich der Materialart, der Temperatur und der Verunreinigungen im Material.

Die elektrische Feldstärke EEE, die benötigt wird, um den Durchbruch zu erreichen, wird oft in Volt pro Meter (V/m) angegeben. Es ist wichtig zu beachten, dass der Dielectric Breakdown Threshold nicht nur von den physikalischen Eigenschaften des Materials abhängt, sondern auch von der Art der angelegten Spannung (z. B. Wechsel- oder Gleichspannung). Ein Beispiel für die Anwendung ist in Hochspannungsleitungen, wo das Verständnis dieses Schwellenwertes entscheidend für die Sicherheit und Effizienz der Stromübertragung ist.

Nichols-Diagramm

Ein Nichols Chart ist ein grafisches Werkzeug, das in der Regel in der Regelungstechnik verwendet wird, um die Stabilität und das Verhalten von dynamischen Systemen zu analysieren. Es stellt die Bode-Diagramme von offenen Schleifen und die Stabilitätsmargen in einem einzigen Diagramm dar. Die x-Achse zeigt die Frequenz in logarithmischer Skala, während die y-Achse die Verstärkung in dB und die Phase in Grad darstellt. Dies ermöglicht Ingenieuren, die Betriebsbedingungen eines Systems zu visualisieren und zu bestimmen, ob das System stabil ist oder nicht, indem sie die Kurven der offenen Schleifenübertragungsfunktion und der geschlossenen Schleifenübertragungsfunktion vergleichen. Ein weiterer Vorteil des Nichols Charts ist, dass es einfach ist, Reglerdesigns zu testen und zu optimieren, indem man die Position der Kurven im Diagramm anpasst.

Baumols Kosten

Baumol’s Cost, auch bekannt als die Baumol-Kosten oder Baumol-Effekte, bezieht sich auf die steigenden Kosten in bestimmten Sektoren der Wirtschaft, die nicht so leicht durch Produktivitätssteigerungen ausgeglichen werden können. Diese Kosten entstehen häufig in Dienstleistungen, wie zum Beispiel im Bildungs- oder Gesundheitswesen, wo menschliche Arbeit eine wesentliche Rolle spielt. Während in der Industrie durch Automatisierung und technologische Fortschritte die Produktivität oft steigt, bleibt die Produktivität in diesen Sektoren relativ konstant, was zu einem prozentual höheren Anstieg der Kosten führt.

Ein zentrales Konzept in diesem Zusammenhang ist, dass diese Dienstleistungen oft nicht an den allgemeinen Produktivitätszuwachs der Wirtschaft angepasst werden können, was zu einer relativen Verteuerung führt. Dies kann auch zu einer Ungleichheit in der Preisentwicklung zwischen verschiedenen Sektoren führen, was letztlich Auswirkungen auf die gesamte Wirtschaft hat. In der mathematischen Darstellung könnte man dies als Cd=Cb⋅(1+r)C_d = C_b \cdot (1 + r)Cd​=Cb​⋅(1+r) formulieren, wobei CdC_dCd​ die Dienstleistungskosten, CbC_bCb​ die Basisdienstleistungskosten und rrr die Rate der Preissteigerung darstellt.

Wkb-Approximation

Die WKB-Approximation (Wentzel-Kramers-Brillouin) ist eine Methode zur Lösung von quantenmechanischen Differentialgleichungen, insbesondere der Schrödinger-Gleichung, in Situationen, in denen die Wellenlänge der Teilchen klein im Vergleich zu den charakteristischen Längenskalen der Potentiallandschaft ist. Diese Approximation geht davon aus, dass die Wellenfunktion als exponentielle Funktion dargestellt werden kann, wobei die Phase der Wellenfunktion stark variiert und die Amplitude langsam ändert. Mathematisch wird dies häufig durch die Annahme einer Lösung der Form

ψ(x)=A(x)eiS(x)/ℏ\psi(x) = A(x) e^{i S(x)/\hbar}ψ(x)=A(x)eiS(x)/ℏ

ausgedrückt, wobei A(x)A(x)A(x) die Amplitude und S(x)S(x)S(x) die Phase ist. Die WKB-Approximation ist besonders nützlich in der Quantenmechanik, um die Eigenschaften von Teilchen in klassischen Potentialen zu untersuchen, und sie ermöglicht die Berechnung von Tunnelprozessen sowie von Energieeigenzuständen in quantisierten Systemen. Sie ist jedoch nur in bestimmten Bereichen anwendbar, insbesondere wenn die Ableitungen von S(x)S(x)S(x) und A(x)A(x)A(x) klein sind, was die Gültigkeit der Approximation einschränkt.

LQR-Regler

Ein LQR-Controller (Linear-Quadratic Regulator) ist ein optimales Steuerungssystem, das häufig in der Regelungstechnik verwendet wird, um die Leistung eines dynamischen Systems zu verbessern. Er basiert auf der Minimierung einer Kostenfunktion, die typischerweise die quadratischen Abweichungen von den gewünschten Zuständen und den Steueraufwand berücksichtigt. Mathematisch wird dies durch die Kostenfunktion

J=∫0∞(xTQx+uTRu) dtJ = \int_0^{\infty} (x^T Q x + u^T R u) \, dtJ=∫0∞​(xTQx+uTRu)dt

definiert, wobei xxx der Zustand des Systems, uuu das Steuerungssignal, QQQ eine Gewichtungsmatrix für die Zustände und RRR eine Gewichtungsmatrix für die Steuerung ist. Der LQR-Controller berechnet die optimale Steuerstrategie, indem er die Rückführung des Zustands u=−Kxu = -Kxu=−Kx mit einer Matrix KKK verwendet, die aus den Lösungen der algebraischen Riccati-Gleichung abgeleitet wird. Diese Methode ermöglicht es, sowohl die Effizienz als auch die Stabilität des Systems zu gewährleisten und findet Anwendung in verschiedenen Bereichen wie Robotik, Automatisierung und Fahrzeugsteuerung.

Jordan-Normalform-Berechnung

Die Jordan-Normalform ist eine spezielle Form einer Matrix, die in der linearen Algebra verwendet wird, um die Struktur von linearen Abbildungen zu untersuchen. Eine Matrix AAA kann in die Jordan-Normalform JJJ überführt werden, die aus Jordan-Blöcken besteht, wobei jeder Block einem Eigenwert von AAA entspricht. Die Berechnung der Jordan-Normalform erfolgt in mehreren Schritten:

  1. Eigenwerte finden: Zuerst bestimmt man die Eigenwerte der Matrix AAA durch Lösen der charakteristischen Gleichung det⁡(A−λI)=0\det(A - \lambda I) = 0det(A−λI)=0.
  2. Eigenvektoren berechnen: Für jeden Eigenwert λ\lambdaλ berechnet man die Eigenvektoren und die zugehörigen Häufigkeiten.
  3. Generalisierten Eigenvektoren: Wenn die algebraische Vielfachheit eines Eigenwerts größer ist als die geometrische Vielfachheit, müssen auch die generalisierten Eigenvektoren berechnet werden.
  4. Jordan-Blöcke erstellen: Basierend auf den Eigenvektoren und den generalisierten Eigenvektoren werden die Jordan-Blöcke erstellt. Diese Blöcke bestehen aus der Hauptdiagonalen, die den Eigenwert enthält, und Einsen auf der Superdiagonalen.

Die resultierende Jordan-Normalform JJJ