StudierendeLehrende

Self-Supervised Learning

Self-Supervised Learning ist eine Form des maschinellen Lernens, bei der ein Modell lernt, ohne dass explizite, manuell beschriftete Daten benötigt werden. Stattdessen erstellt das Modell eigene Labels aus den vorhandenen Daten. Dies geschieht häufig durch das Lösen von Aufgaben, die auf den Daten selbst basieren, wie z.B. das Vorhersagen eines Teils der Eingabedaten aus den anderen Teilen. Ein populäres Beispiel ist die Bildverarbeitung, wo das Modell lernt, die fehlenden Teile eines Bildes vorherzusagen oder zu klassifizieren, indem es Merkmale aus den umgebenden Pixeln nutzt. Diese Methode hat den Vorteil, dass sie große Mengen unbeschrifteter Daten effektiv nutzen kann, was in vielen Anwendungsbereichen, wie der natürlichen Sprachverarbeitung oder Computer Vision, von Vorteil ist. Self-Supervised Learning kann als eine Brücke zwischen unüberwachtem und überwachtem Lernen betrachtet werden und hat in den letzten Jahren an Bedeutung gewonnen, da es die Leistung von Modellen in vielen Aufgaben erheblich verbessert hat.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Laffer-Kurve Fiskalpolitik

Die Laffer-Kurve ist ein wirtschaftliches Konzept, das den Zusammenhang zwischen Steuersätzen und den staatlichen Einnahmen beschreibt. Sie zeigt, dass es einen optimalen Steuersatz gibt, bei dem die Einnahmen maximiert werden; sowohl zu niedrige als auch zu hohe Steuersätze können zu geringeren Einnahmen führen. Dies geschieht, weil sehr niedrige Steuersätze möglicherweise nicht genug Einnahmen generieren, während sehr hohe Steuersätze Investitionen und Arbeitsanreize verringern können, was zu einer Verringerung der wirtschaftlichen Aktivität führt.

Die Kurve kann mathematisch dargestellt werden, wobei die Steuerquote auf der x-Achse und die Steuererträge auf der y-Achse abgetragen werden. Der Verlauf der Kurve zeigt, dass es einen Punkt gibt, an dem eine Erhöhung des Steuersatzes nicht nur die Einnahmen nicht steigert, sondern sie tatsächlich verringert. Die Laffer-Kurve wird oft genutzt, um politische Entscheidungen zu unterstützen, indem sie argumentiert, dass Steuersenkungen unter bestimmten Bedingungen langfristig zu höheren Einnahmen führen können.

Dijkstra-Algorithmus-Komplexität

Dijkstra's Algorithm ist ein effizienter Ansatz zur Bestimmung der kürzesten Wege in einem Graphen mit nicht-negativen Kantengewichten. Die Zeitkomplexität des Algorithmus hängt von der verwendeten Datenstruktur ab. Mit einer Adjazenzmatrix und einer einfachen Liste beträgt die Zeitkomplexität O(V2)O(V^2)O(V2), wobei VVV die Anzahl der Knoten im Graphen ist. Wenn hingegen eine Prioritätswarteschlange (z.B. ein Fibonacci-Heap) verwendet wird, reduziert sich die Komplexität auf O(E+Vlog⁡V)O(E + V \log V)O(E+VlogV), wobei EEE die Anzahl der Kanten darstellt. Diese Verbesserung ist besonders vorteilhaft in spärlichen Graphen, wo EEE viel kleiner als V2V^2V2 sein kann. Daher ist die Wahl der Datenstruktur entscheidend für die Effizienz des Algorithmus.

Feynman-Diagramme

Feynman-Diagramme sind eine visuelle Darstellung von Wechselwirkungen in der Quantenfeldtheorie, die von Richard Feynman eingeführt wurden. Sie ermöglichen es Physikern, komplexe Prozesse wie Teilchenstreuung und -umwandlung einfach darzustellen und zu analysieren. In diesen Diagrammen werden Teilchen durch Linien repräsentiert, wobei gerade Linien für massive Teilchen und gewellte Linien für Bosonen, wie Photonen, stehen. Knoten oder Vertices in den Diagrammen zeigen Punkte an, an denen Teilchen miteinander wechselwirken, was die Berechnung von Wahrscheinlichkeiten für verschiedene physikalische Prozesse vereinfacht. Feynman-Diagramme sind nicht nur ein nützliches Werkzeug für die theoretische Physik, sondern auch für die experimentelle Physik, da sie helfen, Ergebnisse von Experimenten zu interpretieren und Vorhersagen zu treffen.

Stackelberg-Duopol

Das Stackelberg-Duopol ist ein Modell der oligopolistischen Marktstruktur, das beschreibt, wie zwei Unternehmen (Duopolisten) in einem Markt interagieren, wenn eines der Unternehmen als Marktführer und das andere als Marktnachfolger agiert. Der Marktführer trifft zunächst seine Produktionsentscheidung, um seine Gewinnmaximierung zu maximieren, und der Marktnachfolger reagiert darauf, indem er seine eigene Produktionsmenge wählt, basierend auf der Entscheidung des Führers.

Die Hauptannahme in diesem Modell ist, dass der Marktführer seine Entscheidung mit dem Wissen trifft, dass der Nachfolger seine Menge als Reaktion auf die Menge des Führers anpassen wird. Dies führt zu einem strategischen Vorteil für den Marktführer, da er die Bewegungen des Nachfolgers antizipieren kann. Mathematisch lässt sich das Gleichgewicht durch die Reaktionsfunktionen der beiden Firmen beschreiben:

Q1=f(Q2)Q_1 = f(Q_2)Q1​=f(Q2​)

und

Q2=g(Q1)Q_2 = g(Q_1)Q2​=g(Q1​)

Hierbei ist Q1Q_1Q1​ die Menge des Marktführers und Q2Q_2Q2​ die Menge des Marktnachfolgers. Die resultierende Marktnachfrage und die Preisbildung ergeben sich aus der Gesamtmenge Q=Q1+Q2Q = Q_1 + Q_2Q=Q1​+Q2​, was zu unterschiedlichen Preispunkten führt,

Erdős-Kac-Theorem

Das Erdős-Kac-Theorem ist ein zentrales Resultat der analytischen Zahlentheorie, das die Verteilung der Anzahl der Primfaktoren von natürlichen Zahlen untersucht. Es besagt, dass die Anzahl der Primfaktoren (mit Vielfachheiten) einer zufällig gewählten natürlichen Zahl nnn asymptotisch einer Normalverteilung folgt, wenn nnn groß ist. Genauer gesagt, wenn N(n)N(n)N(n) die Anzahl der Primfaktoren von nnn ist, dann gilt:

N(n)−log⁡nlog⁡n→dN(0,1)\frac{N(n) - \log n}{\sqrt{\log n}} \xrightarrow{d} N(0, 1)logn​N(n)−logn​d​N(0,1)

Das bedeutet, dass der Ausdruck N(n)−log⁡nlog⁡n\frac{N(n) - \log n}{\sqrt{\log n}}logn​N(n)−logn​ für große nnn in Verteilung gegen eine Standardnormalverteilung konvergiert. Dies zeigt die tiefe Verbindung zwischen Zahlentheorie und Wahrscheinlichkeitstheorie und unterstreicht die Regelmäßigkeiten in der Verteilung der Primzahlen. Das Theorem wurde unabhängig von Paul Erdős und Mark Kac in den 1930er Jahren formuliert und hat weitreichende Anwendungen in der Zahlentheorie und anderen Bereichen der Mathematik.

Haar-Kaskade

Die Haar Cascade ist ein effektives Verfahren zur Objekterkennung, das häufig in der Computer Vision eingesetzt wird, insbesondere zur Gesichtserkennung. Es basiert auf der Verwendung von Haar-ähnlichen Merkmalen, die aus dem Bild extrahiert werden, um die Präsenz eines Objekts zu identifizieren. Der Prozess beginnt mit der Erstellung eines Cascade-Klassifikators, der aus mehreren Stufen besteht, wobei jede Stufe ein einfaches Entscheidungsmodell darstellt, das die Möglichkeit eines Objekts im Bild bewertet.

Der Vorteil dieser Methode liegt in ihrer Effizienz, da sie nur die Region des Bildes untersucht, die mit hoher Wahrscheinlichkeit das gesuchte Objekt enthält. Die Haar Cascade nutzt außerdem ein Verfahren namens AdaBoost, um relevante Merkmale auszuwählen und das Klassifikationsmodell zu optimieren. Dadurch kann sie schnell und präzise auf verschiedene Bildgrößen und -formatierungen reagieren, was sie zu einer beliebten Wahl für Echtzeitanwendungen macht.