StudierendeLehrende

Tax Incidence

Die Tax Incidence oder Steuerinzidenz beschreibt, wie die wirtschaftlichen Kosten einer Steuer zwischen verschiedenen Marktakteuren, wie Konsumenten und Produzenten, verteilt werden. Es unterscheidet sich zwischen der gesetzlichen Steuerlast (wer die Steuer zahlen muss) und der wirtschaftlichen Steuerlast (wer tatsächlich die Kosten trägt). Wenn beispielsweise eine Steuer auf ein Produkt erhoben wird, könnte der Preis für den Konsumenten steigen, während der Produzent möglicherweise weniger von dem Verkaufspreis behält.

Die Steuerinzidenz hängt von der Preiselastizität von Angebot und Nachfrage ab: Ist die Nachfrage elastisch, tragen die Produzenten einen größeren Teil der Steuerlast; ist sie unelastisch, tragen die Konsumenten mehr. Mathematisch kann dies durch die Formel
SteuerinzidenzK=EdEd+Es\text{Steuerinzidenz}_{K} = \frac{E_d}{E_d + E_s}SteuerinzidenzK​=Ed​+Es​Ed​​
und
SteuerinzidenzP=EsEd+Es\text{Steuerinzidenz}_{P} = \frac{E_s}{E_d + E_s}SteuerinzidenzP​=Ed​+Es​Es​​
dargestellt werden, wobei EdE_dEd​ die Elastizität der Nachfrage und EsE_sEs​ die Elastizität des Angebots darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Newton-Raphson

Das Newton-Raphson-Verfahren ist eine iterative Methode zur Approximation der Nullstellen einer Funktion. Die Grundidee besteht darin, eine Funktion f(x)f(x)f(x) und ihren Ableitungswert f′(x)f'(x)f′(x) zu verwenden, um eine bessere Näherung xn+1x_{n+1}xn+1​ der Nullstelle aus einer aktuellen Näherung xnx_nxn​ zu berechnen. Die Formel zur Aktualisierung lautet:

xn+1=xn−f(xn)f′(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}xn+1​=xn​−f′(xn​)f(xn​)​

Dieses Verfahren konvergiert schnell, insbesondere wenn die Anfangsnäherung nahe an der tatsächlichen Nullstelle liegt. Es ist jedoch wichtig, darauf zu achten, dass die Ableitung f′(x)f'(x)f′(x) nicht gleich null ist, da dies zu Problemen führen kann. Anwendungen finden sich in vielen Bereichen der Wissenschaft und Technik, wo präzise Lösungen für nichtlineare Gleichungen erforderlich sind.

Taylor-Reihe

Die Taylorreihe ist eine mathematische Methode zur Approximation von Funktionen durch Polynomfunktionen. Sie basiert auf der Idee, dass eine glatte Funktion in der Nähe eines bestimmten Punktes aaa durch die Summe ihrer Ableitungen an diesem Punkt beschrieben werden kann. Die allgemeine Form der Taylorreihe einer Funktion f(x)f(x)f(x) um den Punkt aaa lautet:

f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+…f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \ldotsf(x)=f(a)+f′(a)(x−a)+2!f′′(a)​(x−a)2+3!f′′′(a)​(x−a)3+…

Diese Reihe kann auch in einer kompakten Form geschrieben werden:

f(x)=∑n=0∞f(n)(a)n!(x−a)nf(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^nf(x)=n=0∑∞​n!f(n)(a)​(x−a)n

Hierbei ist f(n)(a)f^{(n)}(a)f(n)(a) die nnn-te Ableitung von fff an der Stelle aaa und n!n!n! ist die Fakultät von nnn. Taylorreihen sind besonders nützlich in der Numerik und Physik, da sie es ermöglichen, komplizierte Funktionen durch einfachere Polynome zu approximieren, was Berechnungen erleichtert.

Optogenetik-Kontrolle

Optogenetik ist eine neuartige Methode, die es Wissenschaftlern ermöglicht, bestimmte Zellen in lebenden Organismen mithilfe von Licht zu steuern. Diese Technik kombiniert genetische Manipulation mit optischer Stimulation, um gezielt Neuronen oder andere Zellen zu aktivieren oder zu hemmen. Forscher verwenden häufig Licht-sensitive Proteine, die aus Algen oder anderen Organismen stammen, und integrieren diese in die Zielzellen. Wenn die Zellen dann mit Licht einer bestimmten Wellenlänge bestrahlt werden, verändern die Proteine ihre Struktur und beeinflussen die elektrische Aktivität der Zellen. Dies ermöglicht eine präzise Untersuchung von neuronalen Schaltkreisen und deren Funktionen, was bedeutende Fortschritte in der Neurowissenschaft und der Medizin verspricht. Die Vorteile dieser Methode liegen in der hohen zeitlichen und räumlichen Auflösung, die es ermöglicht, dynamische Prozesse in Echtzeit zu beobachten.

Mean-Variance-Portfoliotheorie

Die Mean-Variance Portfolio Optimization ist eine Methode zur Konstruktion eines optimalen Portfolios, das eine Balance zwischen Risiko und Rendite anstrebt. Entwickelt von Harry Markowitz in den 1950er Jahren, basiert sie auf der Annahme, dass Investoren ihre Entscheidungen auf der erwarteten Rendite und der Volatilität (Risiko) von Anlagen treffen. Der zentrale Gedanke ist, dass durch die Diversifikation von Anlagen das Gesamtrisiko eines Portfolios reduziert werden kann, ohne dass die erwartete Rendite sinkt.

Mathematisch wird das Portfolio durch die Gewichtungen der einzelnen Anlagen wiw_iwi​ optimiert, wobei die erwartete Rendite μp\mu_pμp​ und die Varianz σp2\sigma_p^2σp2​ des Portfolios wie folgt definiert sind:

μp=∑i=1nwiμi\mu_p = \sum_{i=1}^{n} w_i \mu_iμp​=i=1∑n​wi​μi​ σp2=∑i=1n∑j=1nwiwjσij\sigma_p^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}σp2​=i=1∑n​j=1∑n​wi​wj​σij​

Hierbei ist μi\mu_iμi​ die erwartete Rendite der einzelnen Anlagen und σij\sigma_{ij}σij​ die Kovarianz zwischen den Renditen der Anlagen. Das Ziel der Optimierung ist es, die Gewichtungen wiw_iwi​ so zu wählen, dass die erwartete Rendite maximiert und

Mittlerer Wertsatz

Der Mean Value Theorem (Mittelwertsatz) ist ein zentraler Satz der Analysis, der eine wichtige Verbindung zwischen der Ableitung einer Funktion und ihrem Verhalten auf einem Intervall herstellt. Der Satz besagt, dass, wenn eine Funktion fff auf einem geschlossenen Intervall [a,b][a, b][a,b] stetig ist und dort differenzierbar ist (also die Ableitung f′f'f′ existiert) im offenen Intervall (a,b)(a, b)(a,b), dann gibt es mindestens einen Punkt ccc in (a,b)(a, b)(a,b), so dass gilt:

f′(c)=f(b)−f(a)b−af'(c) = \frac{f(b) - f(a)}{b - a}f′(c)=b−af(b)−f(a)​

Dies bedeutet, dass es einen Punkt ccc gibt, an dem die Steigung der Tangente (d.h. die Ableitung f′(c)f'(c)f′(c)) gleich der mittleren Steigung der Funktion über das Intervall [a,b][a, b][a,b] ist. In einfacher Sprache bedeutet dies, dass die Funktion an diesem Punkt so verhält, als ob sie auf dem gesamten Intervall eine konstante Steigung hätte. Der Mittelwertsatz ist nützlich in verschiedenen Anwendungen, einschließlich der Analyse von Geschwindigkeiten, Optimierung und der Bestimmung von Werten innerhalb eines Intervalls.

Modellprädiktive Regelung Anwendungen

Model Predictive Control (MPC) ist eine fortschrittliche Regelungstechnik, die in einer Vielzahl von Anwendungen eingesetzt wird, um komplexe dynamische Systeme zu steuern. Die Grundidee von MPC besteht darin, ein dynamisches Modell des Systems zu verwenden, um zukünftige Verhaltensweisen vorherzusagen und optimale Steuerungsentscheidungen zu treffen. Bei jedem Regelzeitpunkt wird ein Optimierungsproblem formuliert, das darauf abzielt, eine Zielfunktion zu minimieren, während gleichzeitig systematische Einschränkungen berücksichtigt werden. Zu den typischen Anwendungen gehören:

  • Chemie- und Prozessindustrie: Hier wird MPC zur Steuerung von Reaktoren, Destillationskolonnen und anderen Prozessen eingesetzt, um die Produktqualität zu maximieren und den Energieverbrauch zu minimieren.
  • Robotik: MPC wird verwendet, um die Bewegungen von Robotern in dynamischen Umgebungen zu steuern, wobei Kollisionen vermieden und Zielpositionen effektiv erreicht werden.
  • Automobilindustrie: In modernen Fahrzeugen wird MPC zur Regelung von Fahrdynamiksystemen wie ABS und ESP eingesetzt, um die Sicherheit und Fahrstabilität zu erhöhen.

Die Fähigkeit von MPC, zukünftige Zustände vorherzusagen und dynamische Einschränkungen zu berücksichtigen, macht es zu einer besonders leistungsstarken Methode in komplexen und variablen Umgebungen.