Stochastische Spiele sind eine Erweiterung der klassischen Spieltheorie, die Unsicherheiten und zeitliche Dynamiken berücksichtigt. In diesen Spielen interagieren mehrere Spieler nicht nur mit den Entscheidungen der anderen, sondern auch mit einem stochastischen (zufälligen) Element, das den Zustand des Spiels beeinflusst. Die Spieler müssen Strategien entwickeln, die sowohl ihre eigenen Ziele als auch die möglichen Zufallsereignisse berücksichtigen. Ein typisches Merkmal stochastischer Spiele ist die Verwendung von Zuständen, die sich im Laufe der Zeit ändern können, wobei die Übergänge zwischen Zuständen durch Wahrscheinlichkeiten beschrieben werden.
Die mathematische Formulierung eines stochastischen Spiels kann oft durch eine Markov-Entscheidungsprozess (MDP) beschrieben werden, wobei die Belohnungen und Übergangswahrscheinlichkeiten von den Aktionen der Spieler abhängen. Solche Spiele finden Anwendung in verschiedenen Bereichen, wie z.B. in der Wirtschaft, Ökonomie und Biologie, wo Entscheidungen unter Unsicherheit und strategische Interaktionen eine Rolle spielen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.