StudierendeLehrende

Strouhal Number

Die Strouhal-Zahl ist eine dimensionslose Kennzahl, die in der Strömungsmechanik und der Aerodynamik verwendet wird, um das Verhältnis zwischen den Inertialkräften und den viskosen Kräften in einem Fluid zu beschreiben. Sie wird definiert als:

St=fLUSt = \frac{f L}{U}St=UfL​

wobei StStSt die Strouhal-Zahl, fff die Frequenz der Schwingung oder der von einem Körper verursachten Wirbelablösung, LLL eine charakteristische Länge des Körpers (z. B. der Durchmesser eines Zylinders) und UUU die Strömungsgeschwindigkeit ist. Diese Zahl ist besonders wichtig bei der Analyse von Strömungen um Körper, die oszillieren oder rotieren, da sie hilft, das Verhalten der Wirbelbildung und des Flusses zu verstehen. Eine hohe Strouhal-Zahl kann auf instabile Strömungsmuster hinweisen, während eine niedrige Zahl oft mit stabilen Strömungen assoziiert wird. In vielen praktischen Anwendungen, wie z. B. bei Flugzeugen oder Schiffen, ist die Strouhal-Zahl entscheidend für das Design und die Effizienz der Fahrzeuge.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Schwarzschild-Radius

Der Schwarzschild Radius ist ein entscheidendes Konzept in der allgemeinen Relativitätstheorie, das den Radius beschreibt, innerhalb dessen die Gravitationskraft eines Objekts so stark ist, dass nichts, nicht einmal Licht, ihm entkommen kann. Dieser Radius ist besonders wichtig für schwarze Löcher, die als extrem dichte Objekte beschrieben werden. Der Schwarzschild Radius rsr_srs​ kann mit der Formel

rs=2GMc2r_s = \frac{2GM}{c^2}rs​=c22GM​

berechnet werden, wobei GGG die Gravitationskonstante, MMM die Masse des Objekts und ccc die Lichtgeschwindigkeit ist. Wenn ein Objekt komprimiert wird und seinen Schwarzschild Radius erreicht, entsteht ein Ereignishorizont, der die Grenze markiert, ab der keine Informationen mehr nach außen gelangen können. Dies bedeutet, dass für einen Beobachter außerhalb dieses Radius alle Prozesse innerhalb des Ereignishorizonts „unsichtbar“ werden.

Aho-Corasick

Der Aho-Corasick-Algorithmus ist ein effizienter Suchalgorithmus, der verwendet wird, um mehrere Muster gleichzeitig in einem Text zu finden. Er basiert auf einer Trie-Datenstruktur, die die Muster als Knoten speichert, und nutzt zusätzlich einen sogenannten Fail-Pointer, um die Suche zu optimieren. Wenn ein Zeichen nicht mit dem aktuellen Muster übereinstimmt, ermöglicht der Fail-Pointer, dass der Algorithmus auf einen vorherigen Knoten zurückspringt, anstatt die gesamte Suche neu zu starten. Dadurch erreicht der Aho-Corasick-Algorithmus eine Zeitkomplexität von O(n+m+z)O(n + m + z)O(n+m+z), wobei nnn die Länge des Textes, mmm die Gesamtlänge der Muster und zzz die Anzahl der gefundenen Vorkommen ist. Diese Effizienz macht den Algorithmus besonders nützlich in Anwendungen wie der Textverarbeitung, der Netzwerktraffic-Analyse und der Malware-Erkennung.

Dynamische Konnektivität in Graphen

Dynamische Konnektivität in Graphen bezieht sich auf die Fähigkeit, die Konnektivität zwischen Knoten in einem Graphen effizient zu verfolgen, während sich die Struktur des Graphen im Laufe der Zeit ändert. Dies umfasst Operationen wie das Hinzufügen oder Entfernen von Kanten und Knoten. Bei einer dynamischen Graphenstruktur ist es wichtig, dass die Algorithmen zur Bestimmung, ob zwei Knoten verbunden sind, schnell ausgeführt werden können, selbst wenn der Graph häufig modifiziert wird.

Ein klassisches Problem in diesem Bereich ist es, den Zustand der Konnektivität nach jeder Änderung zu aktualisieren, was in der Regel in einem Zeitrahmen von O(log⁡n)O(\log n)O(logn) oder besser liegen sollte, wobei nnn die Anzahl der Knoten im Graphen ist. Zu den verwendeten Techniken gehören Union-Find-Datenstrukturen, die es ermöglichen, effizient Mengen zu verbinden und zu finden, sowie Algorithmen wie das Link/Cut Tree, das für dynamische Graphen optimiert ist.

Cayley-Diagramme

Cayley-Diagramme sind eine grafische Darstellung von Gruppen, die eine Verbindung zwischen algebraischen Strukturen und Graphen herstellen. Ein Cayley-Graph wird für eine Gruppe GGG und eine Menge von Erzeugern SSS konstruiert, wobei jeder Knoten im Graphen ein Element der Gruppe repräsentiert. Zwei Knoten ggg und hhh sind durch eine Kante verbunden, wenn hhh durch die Anwendung eines Erzeugers s∈Ss \in Ss∈S auf ggg erreicht werden kann, d.h. h=gsh = gsh=gs.

Die Eigenschaften eines Cayley-Graphs sind vielfältig: Sie sind zusammenhängend, wenn die Erzeugermenge SSS die Gruppe vollständig abdeckt, und sie bieten Einblicke in die Struktur und Symmetrie der Gruppe. Cayley-Graphen sind ein wertvolles Werkzeug in der Algebra und der theoretischen Informatik, da sie helfen, die Beziehung zwischen verschiedenen Gruppen zu visualisieren und zu analysieren.

Chromatin-Zugänglichkeitsassays

Chromatin Accessibility Assays sind experimentelle Techniken, die verwendet werden, um die Zugänglichkeit von Chromatin für Transkriptionsfaktoren und andere regulatorische Proteine zu untersuchen. Diese Assays ermöglichen es Wissenschaftlern, die Struktur und Organisation des Chromatins in verschiedenen Zelltypen oder unter unterschiedlichen Bedingungen zu analysieren. Eine gängige Methode ist die ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing), bei der eine Transposase eingesetzt wird, um offene Chromatinregionen zu markieren, die anschließend sequenziert werden.

Die Ergebnisse solcher Assays können auf verschiedene Weisen interpretiert werden, um zu bestimmen, welche Genregionen aktiv sind und wie sie durch epigenetische Modifikationen beeinflusst werden. Zu den Anwendungen gehören die Erforschung von Genregulation, der Identifizierung von Enhancern sowie das Verständnis von Krankheitsmechanismen, insbesondere in der Krebsforschung. Die Analyse von Chromatin-Zugänglichkeit ist somit ein entscheidender Schritt für das Verständnis der Genexpression und der zellulären Differenzierung.

Prim’S Mst

Der Algorithmus Prim's Minimum Spanning Tree (MST) ist ein effizienter Verfahren zur Bestimmung eines minimalen Spannbaums in einem gewichteten, zusammenhängenden Graphen. Ein minimaler Spannbaum ist ein Teilgraph, der alle Knoten des ursprünglichen Graphen verbindet, ohne Zyklen zu bilden, und dabei die Summe der Kantengewichte minimiert. Der Algorithmus beginnt mit einem beliebigen Startknoten und fügt iterativ die Kante mit dem kleinsten Gewicht hinzu, die einen neuen Knoten verbindet. Dieser Vorgang wird wiederholt, bis alle Knoten im Spannbaum enthalten sind. Prim's Algorithmus hat eine Zeitkomplexität von O(Elog⁡V)O(E \log V)O(ElogV), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist.