StudierendeLehrende

Turbo Codes

Turbo Codes sind eine Klasse von Fehlerkorrekturcodes, die 1993 eingeführt wurden und sich durch ihre hohe Effizienz bei der Fehlerkorrektur auszeichnen. Sie bestehen aus zwei oder mehr einfachen fehlerkorrigierenden Codes, die parallel und rekursiv miteinander kombiniert werden. Die grundlegende Idee ist, dass die Informationen durch mehrere Codierungsstufen geschickt werden, wobei jede Stufe zusätzliche Redundanz hinzufügt, um die Wahrscheinlichkeit zu erhöhen, dass der Empfänger die ursprünglichen Daten korrekt rekonstruieren kann.

Turbo Codes nutzen Iterative Decodierung, bei der der Decoder wiederholt Schätzungen der Informationen verbessert, indem er die Ausgaben der verschiedenen Codierer nutzt. Diese Methode führt zu nahezu optimalen Ergebnissen in Bezug auf die Bitfehlerrate, besonders nahe am Shannon-Grenzwert. Die Effizienz und Robustheit von Turbo Codes machen sie besonders geeignet für moderne Kommunikationssysteme, wie z.B. Mobilfunknetze und Satellitenkommunikation.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

H-Brücken-Pulsweitenmodulation

Die H-Brücke ist eine Schaltung, die es ermöglicht, Gleichstrommotoren in beiden Richtungen zu betreiben, indem sie die Polarität der Versorgungsspannung umkehrt. Die Pulsweitenmodulation (PWM) ist eine Technik, die verwendet wird, um die Leistung, die an den Motor geliefert wird, zu steuern, indem die durchschnittliche Spannung durch schnelles Ein- und Ausschalten der Stromversorgung variiert wird. Bei der PWM wird das Verhältnis von „Ein-Zeit“ zu „Aus-Zeit“ als Duty Cycle bezeichnet und in Prozent ausgedrückt. Ein höherer Duty Cycle bedeutet, dass der Motor mehr Leistung erhält, was zu einer höheren Drehzahl führt, während ein niedrigerer Duty Cycle die Leistung und Drehzahl reduziert. Mathematisch kann der Duty Cycle als
Duty Cycle=tonton+toff×100%\text{Duty Cycle} = \frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} \times 100 \%Duty Cycle=ton​+toff​ton​​×100%
dargestellt werden, wobei tont_{\text{on}}ton​ die Zeit ist, in der der Strom fließt, und tofft_{\text{off}}toff​ die Zeit, in der der Strom unterbrochen ist. Diese Technik ermöglicht eine präzise Steuerung der Motorleistung und ist besonders nützlich in Anwendungen wie Robotik und industriellen Steuerungen.

Stochastischer Gradientenabstieg

Stochastic Gradient Descent (SGD) ist ein Optimierungsalgorithmus, der häufig im Bereich des maschinellen Lernens und der neuronalen Netze eingesetzt wird. Im Gegensatz zum traditionellen Gradientenabstieg, der den gesamten Datensatz verwendet, um den Gradienten der Verlustfunktion zu berechnen, nutzt SGD nur einen einzelnen Datenpunkt oder eine kleine Stichprobe (Mini-Batch) in jedem Schritt. Dies führt zu einer schnelleren und dynamischeren Anpassung der Modellparameter, da die Updates häufiger und mit weniger Rechenaufwand erfolgen.

Der Algorithmus aktualisiert die Parameter θ\thetaθ eines Modells gemäß der Regel:

θ=θ−η∇J(θ;x(i),y(i))\theta = \theta - \eta \nabla J(\theta; x^{(i)}, y^{(i)})θ=θ−η∇J(θ;x(i),y(i))

Hierbei ist η\etaη die Lernrate, ∇J(θ;x(i),y(i))\nabla J(\theta; x^{(i)}, y^{(i)})∇J(θ;x(i),y(i)) der Gradient der Verlustfunktion JJJ für den Datenpunkt (x(i),y(i))(x^{(i)}, y^{(i)})(x(i),y(i)). Trotz seiner Vorteile kann SGD jedoch zu einer hohen Varianz in den Updates führen, was es notwendig macht, geeignete Techniken wie Lernratenanpassung oder Momentum zu verwenden, um die Konvergenz zu verbessern.

Neurotransmitter-Rezeptor-Mapping

Neurotransmitter Receptor Mapping bezieht sich auf die systematische Kartierung der verschiedenen Rezeptoren im Gehirn, die spezifische Neurotransmitter binden. Diese Methode ist entscheidend für das Verständnis der neuronalen Kommunikation und der Funktionsweise des zentralen Nervensystems. Durch den Einsatz von Techniken wie Positronen-Emissions-Tomographie (PET) und Magnetresonanztomographie (MRT) können Forscher die Verteilung und Dichte von Rezeptoren visualisieren. Die Ergebnisse dieser Mapping-Studien helfen, Zusammenhänge zwischen Rezeptoraktivität und verschiedenen neurologischen Erkrankungen zu erkennen, wie zum Beispiel Depressionen oder Schizophrenie. Ein wichtiger Aspekt ist auch die Untersuchung der Affinität von Neurotransmittern zu ihren Rezeptoren, was durch die Berechnung von Bindungsparametern erfolgt, die oft in der Form von
Kd=[L][R][RL]K_d = \frac{[L]}{[R][RL]}Kd​=[R][RL][L]​
dargestellt werden, wobei KdK_dKd​ die Dissoziationskonstante ist.

Hadronenbeschleuniger

Ein Hadron Collider ist ein Teilchenbeschleuniger, der dazu verwendet wird, subatomare Teilchen, insbesondere Hadronen wie Protonen und Neutronen, auf extrem hohe Geschwindigkeiten zu beschleunigen und sie zur Kollision zu bringen. Diese Kollisionen erzeugen Bedingungen, die kurz nach dem Urknall ähnlich sind, und ermöglichen es Wissenschaftlern, die grundlegenden Bausteine der Materie und die Kräfte, die sie zusammenhalten, zu untersuchen. Der bekannteste Hadron Collider ist der Large Hadron Collider (LHC) am CERN in der Nähe von Genf, der mit einem Umfang von 27 km der größte seiner Art ist. Durch die Analyse der Kollisionsergebnisse können Physiker Theorien wie das Standardmodell der Teilchenphysik testen und nach neuen Phänomenen wie der Dunklen Materie suchen. Die Forschung am LHC hat bereits zur Entdeckung des Higgs-Bosons geführt, einem entscheidenden Teilchen für das Verständnis der Masse im Universum.

Stagflation-Effekte

Stagflation beschreibt eine wirtschaftliche Situation, in der stagnierendes Wirtschaftswachstum, hohe Arbeitslosigkeit und steigende Inflation gleichzeitig auftreten. Diese Kombination ist besonders problematisch, weil die üblichen geldpolitischen Maßnahmen, um die Inflation zu bekämpfen, oft das Wirtschaftswachstum weiter bremsen können. Bei steigenden Preisen (Inflation) sinkt die Kaufkraft der Verbraucher, was zu einem Rückgang der Nachfrage führt. Infolgedessen können Unternehmen weniger produzieren, was die Arbeitslosigkeit erhöht. Um die Auswirkungen zu verdeutlichen, können folgende Punkte hervorgehoben werden:

  • Erhöhte Lebenshaltungskosten: Die Verbraucher müssen mehr für grundlegende Güter und Dienstleistungen ausgeben.
  • Wirtschaftliche Unsicherheit: Unternehmen sind zögerlich, Investitionen zu tätigen, was das Wirtschaftswachstum weiter hemmt.
  • Soziale Unruhen: Hohe Arbeitslosigkeit und steigende Preise können zu Unzufriedenheit in der Bevölkerung führen.

Insgesamt stellt Stagflation eine herausfordernde Situation für Regierungen und Zentralbanken dar, da sie oft in einem Dilemma zwischen der Bekämpfung von Inflation und der Schaffung von Arbeitsplätzen stecken.

Laplace-Gleichung

Die Laplace-Gleichung ist eine wichtige partielle Differentialgleichung, die in der Mathematik und Physik weit verbreitet ist. Sie wird häufig in Bereichen wie der Elektrostatik, Fluiddynamik und der Wärmeleitung verwendet. Die Gleichung ist definiert als:

∇2ϕ=0\nabla^2 \phi = 0∇2ϕ=0

wobei ∇2\nabla^2∇2 der Laplace-Operator ist und ϕ\phiϕ eine skalare Funktion darstellt. Diese Gleichung beschreibt das Verhalten von skalaren Feldern, in denen keine lokalen Quellen oder Senken vorhanden sind, was bedeutet, dass die Funktion ϕ\phiϕ in einem bestimmten Gebiet konstant ist oder gleichmäßig verteilt wird. Lösungen der Laplace-Gleichung sind als harmonische Funktionen bekannt und besitzen viele interessante Eigenschaften, wie z.B. die Erfüllung des Maximum-Prinzips, das besagt, dass der maximale Wert einer harmonischen Funktion innerhalb eines bestimmten Bereichs an seinem Rand erreicht wird.