StudierendeLehrende

Veblen Effect

Der Veblen Effect beschreibt ein Phänomen in der Konsumtheorie, bei dem die Nachfrage nach bestimmten Gütern steigt, wenn deren Preis ebenfalls steigt, anstatt wie üblich zu sinken. Dies tritt häufig bei Luxusgütern auf, die als Statussymbole fungieren. Konsumenten sind bereit, höhere Preise zu zahlen, um ihren sozialen Status zu demonstrieren oder sich von anderen abzuheben.

Ein typisches Beispiel sind Designer-Handtaschen oder teure Autos: Je teurer sie sind, desto attraktiver erscheinen sie für bestimmte Käufergruppen. Der Effekt widerspricht dem klassischen Gesetz von Angebot und Nachfrage, welches besagt, dass bei steigendem Preis die Nachfrage in der Regel sinkt. Stattdessen wird hier der Preis selbst zum Signal für Qualität und Exklusivität, was das Kaufverhalten beeinflusst.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Brayton-Nachheizung

Brayton Reheating ist ein thermodynamischer Prozess, der in Gasturbinenkraftwerken und anderen thermischen Maschinen verwendet wird, um die Effizienz des gesamten Systems zu steigern. Bei diesem Verfahren wird die Temperatur des Arbeitsgases nach der ersten Expansion in einer Turbine durch die erneute Verbrennung von Kraftstoff erhöht, bevor es in die nächste Turbine eintritt. Dies ermöglicht eine höhere Energieausbeute aus dem Treibstoff, da das Gas bei einer höheren Temperatur expandiert, was zu einer effizienteren Umwandlung von Wärme in mechanische Energie führt.

Der Prozess kann in zwei Hauptschritte unterteilt werden: Zuerst wird das Arbeitsgas durch den Kompressor komprimiert und in der Brennkammer erhitzt. Anschließend erfolgt die Expansion in der ersten Turbine, gefolgt von einer Reheizung, bevor das Gas in die zweite Turbine geleitet wird. Diese Technik kann die thermodynamische Effizienz eines Brayton-Zyklus erhöhen, was sich positiv auf die Gesamtleistung und die Betriebskosten auswirkt.

Piezoelektrischer Aktuator

Ein Piezoelectric Actuator ist ein elektrisches Bauelement, das die piezoelektrischen Eigenschaften bestimmter Materialien nutzt, um mechanische Bewegungen zu erzeugen. Diese Materialien verändern ihre Form oder Größe, wenn sie einer elektrischen Spannung ausgesetzt werden, was als Piezoelektrizität bezeichnet wird. Piezoelectric Actuators sind in der Lage, präzise und schnelle Bewegungen zu erzeugen, was sie ideal für Anwendungen in der Mikropositionierung, in der Medizintechnik und in der Automatisierungstechnik macht.

Die Funktionsweise basiert auf der Beziehung zwischen elektrischer Spannung VVV und der resultierenden Deformation ddd des Materials, die durch die Gleichung d=k⋅Vd = k \cdot Vd=k⋅V beschrieben werden kann, wobei kkk eine Konstante ist, die die Effizienz des Actuators beschreibt. Zu den Vorteilen dieser Aktoren gehören ihre hohe Steifigkeit, sehr schnelle Reaktionszeiten und die Möglichkeit, in einem breiten Frequenzbereich betrieben zu werden.

Quantencomputing-Grundlagen

Quantum Computing ist ein revolutionäres Konzept, das auf den Prinzipien der Quantenmechanik basiert. Im Gegensatz zu klassischen Computern, die Informationen in Form von Bits (0 oder 1) verarbeiten, nutzen Quantencomputer Qubits, die sich in Überlagerungszuständen befinden können. Dies bedeutet, dass ein Qubit gleichzeitig in mehreren Zuständen sein kann, was zu einer exponentiellen Steigerung der Rechenleistung führt. Ein wichtiges Konzept ist die Verschränkung, die es Qubits ermöglicht, miteinander zu kommunizieren, unabhängig von der Entfernung zwischen ihnen. Diese Eigenschaften erlauben es Quantencomputern, bestimmte Probleme, wie die Faktorisierung großer Zahlen oder die Simulation von Molekülen, erheblich schneller zu lösen als ihre klassischen Pendants. Durch diese Fortschritte hat Quantum Computing das Potenzial, verschiedene Bereiche wie Kryptografie, Materialwissenschaften und künstliche Intelligenz zu transformieren.

Riemann-Zeta

Die Riemann-Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt. Sie wird definiert für komplexe Zahlen sss mit dem Realteil größer als 1 durch die unendliche Reihe:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, außer bei s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein besonders bemerkenswerter Aspekt der Riemann-Zeta-Funktion ist ihre Verbindung zur Verteilung der Primzahlen, wie im berühmten Riemann-Hypothese formuliert, die besagt, dass alle nicht-trivialen Nullstellen der Funktion eine bestimmte Eigenschaft bezüglich ihrer Lage auf der kritischen Linie Re(s)=12\text{Re}(s) = \frac{1}{2}Re(s)=21​ haben. Die Zeta-Funktion spielt auch eine wichtige Rolle in verschiedenen Bereichen der Mathematik und Physik, einschließlich der Quantenmechanik und der statistischen Physik.

Plasmonische Metamaterialien

Plasmonic Metamaterials sind künstlich geschaffene Materialien, die einzigartige optische Eigenschaften aufweisen, die in der Natur nicht vorkommen. Sie nutzen die Wechselwirkung zwischen Licht und den kollektiven Schwingungen der Elektronen an der Oberfläche von Metallen, bekannt als Plasmonen. Diese Materialien können Licht bei Wellenlängen steuern, die kleiner als die Struktur selbst sind, was zu Phänomenen wie Superlensing und Holo-Optik führt. Plasmonic Metamaterials finden Anwendung in verschiedenen Bereichen, darunter die Sensorik, die Photovoltaik und die Nanophotonik. Eine der bemerkenswertesten Eigenschaften ist die Fähigkeit, elektromagnetische Wellen zu fokussieren und zu manipulieren, was die Entwicklung neuartiger Technologien ermöglicht, die über die Grenzen der klassischen Optik hinausgehen.

Compton-Effekt

Der Compton-Effekt beschreibt die Veränderung der Wellenlänge von Photonen, wenn sie mit Elektronen streuen. Dieser Effekt wurde 1923 von dem Physiker Arthur H. Compton entdeckt und bestätigte die Teilchen-Natur von Licht. Bei der Kollision eines Photons mit einem ruhenden Elektron wird ein Teil der Energie des Photons auf das Elektron übertragen, was zu einer Erhöhung der Wellenlänge des gestreuten Photons führt. Die Beziehung zwischen der Änderung der Wellenlänge Δλ\Delta \lambdaΔλ und dem Streuwinkel θ\thetaθ des Photons wird durch die Formel gegeben:

Δλ=hmec(1−cos⁡θ)\Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta)Δλ=me​ch​(1−cosθ)

wobei hhh das Plancksche Wirkungsquantum, mem_eme​ die Masse des Elektrons und ccc die Lichtgeschwindigkeit ist. Der Compton-Effekt zeigt, dass Licht sowohl als Welle als auch als Teilchen betrachtet werden kann, was einen wichtigen Beitrag zur Quantenmechanik leistet.