StudierendeLehrende

Reinforcement Q-Learning

Reinforcement Q-Learning ist ein verstärkendes Lernen-Verfahren, das darauf abzielt, eine optimale Strategie für einen Agenten in einer gegebenen Umgebung zu erlernen. Der Agent interagiert mit der Umgebung, indem er Aktionen auswählt und dafür Rückmeldungen in Form von Belohnungen erhält. Der Kern des Q-Learning-Algorithmus ist die Q-Funktion, die den Wert einer bestimmten Aktion in einem bestimmten Zustand beschreibt. Diese Q-Werte werden iterativ aktualisiert, basierend auf der Formel:

Q(s,a)←Q(s,a)+α(r+γmax⁡a′Q(s′,a′)−Q(s,a))Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)Q(s,a)←Q(s,a)+α(r+γa′max​Q(s′,a′)−Q(s,a))

Hierbei steht sss für den aktuellen Zustand, aaa für die gewählte Aktion, rrr für die erhaltene Belohnung, s′s's′ für den nächsten Zustand, α\alphaα für die Lernrate und γ\gammaγ für den Diskontfaktor. Durch ständiges Lernen und Anpassen der Q-Werte kann der Agent schließlich eine Strategie entwickeln, die es ihm ermöglicht, in der Umgebung maximale Belohnungen zu erzielen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Photonische Kristallgestaltung

Das Design von photonischen Kristallen bezieht sich auf die gezielte Gestaltung von Materialien, die eine regelmäßige Struktur aufweisen und die Wechselwirkung von Licht mit Materie steuern können. Diese Kristalle haben eine periodische Anordnung von Materialien mit unterschiedlichen Brechungsindices, was zu einem Phänomen führt, das als Bandlücken bekannt ist. In diesen Bandlücken kann Licht bestimmter Frequenzen nicht propagieren, wodurch photonische Kristalle als Filter oder Wellenleiter fungieren.

Ein typisches Beispiel sind photonic crystal fibers, die durch ihr Design eine hochgradige Kontrolle über die Lichtausbreitung bieten. Die mathematische Beschreibung solcher Strukturen erfolgt oft durch die Lösung der Maxwell-Gleichungen, wobei die Strukturparameter wie Periodizität und Brechungsindex entscheidend sind. Die Anwendungsmöglichkeiten reichen von optischen Komponenten in der Telekommunikation bis hin zu Sensoren und Quantencomputing.

Turing-Test

Der Turing Test ist ein Konzept, das von dem britischen Mathematiker und Informatiker Alan Turing 1950 in seinem Aufsatz "Computing Machinery and Intelligence" eingeführt wurde. Ziel des Tests ist es, die Fähigkeit einer Maschine zu bewerten, menschenähnliches Denken zu simulieren. Bei diesem Test interagiert ein menschlicher Prüfer über ein Textinterface mit sowohl einem Menschen als auch einer Maschine, ohne zu wissen, wer wer ist. Wenn der Prüfer nicht in der Lage ist, die Maschine von dem Menschen zu unterscheiden, gilt die Maschine als "intelligent".

Der Test basiert auf der Annahme, dass Intelligenz nicht nur in der Fähigkeit besteht, Probleme zu lösen, sondern auch in der Fähigkeit zur Kommunikation. Kritiker des Tests argumentieren jedoch, dass er nicht alle Aspekte von Intelligenz erfasst, da eine Maschine auch ohne echtes Verständnis oder Bewusstsein antworten kann.

Keynesianischer Schönheitswettbewerb

Der Keynesian Beauty Contest ist ein Konzept aus der Ökonomie, das von dem britischen Ökonomen John Maynard Keynes eingeführt wurde. Es beschreibt, wie Investoren oft nicht nur ihre eigenen Meinungen über den Wert eines Vermögenswertes bilden, sondern auch versuchen, die Meinungen anderer Marktteilnehmer vorherzusagen. In diesem Wettbewerb geht es darum, den „schönsten“ Teilnehmer zu wählen, wobei die Schönheit nicht objektiv, sondern durch die Präferenzen der Mehrheit bestimmt wird.

In diesem Sinne könnten Anleger dazu verleitet werden, in Vermögenswerte zu investieren, die sie für die attraktivsten halten, basierend auf dem, was sie glauben, dass andere Investoren ebenfalls für attraktiv halten. Dies führt zu einer Kettenreaktion, in der die Marktpreise von Erwartungen und Spekulationen dominiert werden, anstatt von den zugrunde liegenden wirtschaftlichen Fundamentaldaten. Der Keynesian Beauty Contest verdeutlicht somit die Rolle von Erwartungen und Psychologie im Finanzmarkt und hebt die Abweichung zwischen Marktpreisen und tatsächlichem Wert hervor.

Mensch-Computer-Interaktion Design

Human-Computer Interaction Design (HCI-Design) beschäftigt sich mit der Gestaltung der Schnittstelle zwischen Menschen und Computern, um die Benutzererfahrung zu optimieren. Ziel ist es, benutzerfreundliche Systeme zu entwickeln, die intuitiv zu bedienen sind und den Bedürfnissen der Nutzer gerecht werden. HCI-Design umfasst verschiedene Disziplinen wie Psychologie, Informatik und Design, um ein tiefes Verständnis dafür zu erlangen, wie Menschen mit Technologie interagieren. Dabei werden Methoden wie Benutzerforschung, Prototyping und Usability-Tests eingesetzt, um sicherzustellen, dass die entwickelten Produkte sowohl effektiv als auch angenehm in der Nutzung sind. Ein zentrales Prinzip ist die Benutzerzentrierte Gestaltung, bei der die Perspektive und die Bedürfnisse der Benutzer im gesamten Entwicklungsprozess im Vordergrund stehen.

Zinsstrukturkurve

Die Zinsstrukturkurve oder Yield Curve ist ein grafisches Werkzeug, das die Beziehung zwischen den Zinssätzen (oder Renditen) von Anleihen unterschiedlicher Laufzeiten darstellt, typischerweise für Staatsanleihen. Sie zeigt, wie die Rendite einer Anleihe mit der Laufzeit variiert, wobei kurzfristige Anleihen oft niedrigere Renditen aufweisen als langfristige Anleihen. Diese Kurve kann in drei Hauptformen auftreten:

  • Normal: Langfristige Zinssätze sind höher als kurzfristige, was auf ein gesundes Wirtschaftswachstum hindeutet.
  • Invers: Kurzfristige Zinssätze übersteigen langfristige, was oft als Signal für eine bevorstehende Rezession interpretiert wird.
  • Flach: Die Renditen sind über verschiedene Laufzeiten hinweg ähnlich, was Unsicherheit über die zukünftige wirtschaftliche Entwicklung widerspiegelt.

Die Analyse der Zinsstrukturkurve ist entscheidend für Investoren und Ökonomen, da sie tiefere Einblicke in die Marktbedingungen und die Erwartungen hinsichtlich zukünftiger Zinssätze und wirtschaftlicher Aktivitäten bietet.

Karp-Rabin-Algorithmus

Der Karp-Rabin Algorithmus ist ein effizienter Suchalgorithmus zur Mustererkennung in Texten, der auf der Verwendung von Hash-Funktionen basiert. Er ermöglicht es, ein Muster in einem Text mit einer durchschnittlichen Zeitkomplexität von O(n)O(n)O(n), wobei nnn die Länge des Textes ist, zu finden. Der Algorithmus berechnet einen Hash-Wert für das Muster und für die substrings des Textes mit der gleichen Länge wie das Muster. Wenn die Hash-Werte übereinstimmen, wird eine genauere Überprüfung des Musters durchgeführt, um sicherzustellen, dass es sich tatsächlich um einen Treffer handelt.

Die Hash-Funktion wird typischerweise als polynomialer Hash definiert:

H(S)=(s0⋅bm−1+s1⋅bm−2+…+sm−1⋅b0)mod  pH(S) = (s_0 \cdot b^{m-1} + s_1 \cdot b^{m-2} + \ldots + s_{m-1} \cdot b^0) \mod pH(S)=(s0​⋅bm−1+s1​⋅bm−2+…+sm−1​⋅b0)modp

wobei SSS die Zeichen des Musters, mmm die Länge des Musters, bbb eine Basis und ppp eine Primzahl ist. Ein Vorteil des Karp-Rabin Algorithmus ist die Möglichkeit, den Hash-Wert effizient von einem substring zum nächsten zu aktualisieren, was die Berechnungen beschleunigt.