StudierendeLehrende

Z-Algorithm

Der Z-Algorithm ist ein effizienter Algorithmus zur Mustererkennung in Strings, der die Z-Array-Datenstruktur verwendet. Das Z-Array für eine gegebene Zeichenkette SSS ist ein Array, bei dem jeder Index iii den Wert Z[i]Z[i]Z[i] enthält, der die Länge des längsten Präfixes von SSS, das auch als Suffix beginnt, ab dem Index iii. Der Algorithmus berechnet das Z-Array in linearer Zeit, also in O(n)O(n)O(n), wobei nnn die Länge der Zeichenkette ist.

Das Z-Array ermöglicht es, schnell zu überprüfen, ob ein Muster in einem Text vorkommt, indem man die Werte im Z-Array mit der Länge des Musters vergleicht. Die Hauptanwendung des Z-Algorithmus besteht darin, die Suche nach Mustern in Texten oder großen Datenmengen zu optimieren, was ihn besonders nützlich in der Bioinformatik, Textverarbeitung und Datenkompression macht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Krylov-Unterraum

Der Krylov-Unterraum ist ein Konzept aus der numerischen Mathematik, das vor allem in der Lösung von linearen Systemen und Eigenwertproblemen Anwendung findet. Er wird durch wiederholte Multiplikation einer gegebenen Matrix AAA mit einem Vektor bbb erzeugt. Formal wird der kkk-te Krylov-Unterraum definiert als:

Kk(A,b)=span{b,Ab,A2b,…,Ak−1b}K_k(A, b) = \text{span}\{ b, Ab, A^2b, \ldots, A^{k-1}b \}Kk​(A,b)=span{b,Ab,A2b,…,Ak−1b}

Hierbei ist span\text{span}span der Spann eines Vektorraums, der alle Linearkombinationen der angegebenen Vektoren umfasst. Krylov-Unterräume sind besonders nützlich, weil sie oft die wichtigsten Informationen über das Verhalten der Matrix AAA enthalten. Viele iterative Verfahren, wie das GMRES (Generalized Minimal Residual Method) oder das Lanczos-Verfahren, nutzen diese Unterräume, um die Lösung effizienter zu approximieren. In der Praxis ermöglicht die Dimension des Krylov-Unterraums eine Reduzierung der Komplexität bei der Berechnung von Lösungen für große, spärlich besetzte Matrizen.

Harberger Triangle

Das Harberger Triangle ist ein Konzept aus der Wohlfahrtsökonomie, das die Wohlfahrtsverluste beschreibt, die durch Steuern oder Marktverzerrungen entstehen. Es veranschaulicht, wie eine Steuer auf ein Gut zu einer Verringerung der Handelsmenge führt und damit sowohl die Produzenten- als auch die Konsumentenrente beeinflusst. Die Fläche des Harberger Triangles repräsentiert den Wohlfahrtsverlust, der entsteht, weil die Steuer den Markt in eine ineffiziente Situation zwingt. Mathematisch kann dieser Verlust als 12×Basis×Ho¨he\frac{1}{2} \times \text{Basis} \times \text{Höhe}21​×Basis×Ho¨he dargestellt werden, wobei die Basis die reduzierte Handelsmenge und die Höhe die Steuerhöhe ist. Dieses Konzept zeigt, dass Steuern nicht nur Einnahmen generieren, sondern auch negative Auswirkungen auf die Gesamtwirtschaft haben können, indem sie die Effizienz des Marktes verringern.

Phasenregelkreis-Anwendungen

Phase-Locked Loops (PLLs) sind vielseitige elektronische Schaltungen, die zur Synchronisation von Signalphasen und -frequenzen in verschiedenen Anwendungen eingesetzt werden. Sie finden sich in der Telekommunikation, um Frequenzen von Sendern und Empfängern zu synchronisieren und so die Signalqualität zu verbessern. In der Signalverarbeitung werden PLLs verwendet, um digitale Signale zu rekonstruieren und Rauschunterdrückung zu ermöglichen. Zu den weiteren Anwendungen gehören die Frequenzsynthese, wo sie helfen, präzise Frequenzen aus einer Referenzfrequenz zu erzeugen, sowie in der Uhren- und Zeitmessung, um stabile Taktgeber für digitale Systeme bereitzustellen. Zusätzlich spielen PLLs eine wichtige Rolle in der Motorsteuerung und der Bildsynchronisation in Fernsehern und Monitoren, wo sie zur Stabilisierung von Bildfrequenzen eingesetzt werden.

Shannon-Entropie-Formel

Die Shannon-Entropie ist ein Maß für die Unsicherheit oder den Informationsgehalt einer Zufallsvariable. Sie wird häufig in der Informationstheorie verwendet, um die Menge an Information zu quantifizieren, die in einem bestimmten Datensatz enthalten ist. Die Formel für die Shannon-Entropie H(X)H(X)H(X) einer diskreten Zufallsvariablen XXX mit möglichen Werten x1,x2,…,xnx_1, x_2, \ldots, x_nx1​,x2​,…,xn​ und Wahrscheinlichkeiten p(x1),p(x2),…,p(xn)p(x_1), p(x_2), \ldots, p(x_n)p(x1​),p(x2​),…,p(xn​) lautet:

H(X)=−∑i=1np(xi)log⁡2p(xi)H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)H(X)=−i=1∑n​p(xi​)log2​p(xi​)

Hierbei ist log⁡2\log_2log2​ der Logarithmus zur Basis 2, und die Entropie wird in Bit gemessen. Eine höhere Entropie bedeutet, dass die Zufallsvariable mehr Unsicherheit oder Vielfalt aufweist, während eine Entropie von null darauf hinweist, dass es keine Unsicherheit gibt, weil ein Ergebnis sicher ist. Die Shannon-Entropie ist ein fundamentales Konzept in der Datenkompression, Kryptographie und vielen anderen Bereichen der Informatik und Statistik.

Cloud-Computing-Infrastruktur

Cloud Computing Infrastructure bezieht sich auf die Kombination von Hardware, Software und Netzwerktechnologien, die benötigt werden, um Cloud-Dienste anzubieten und zu verwalten. Diese Infrastruktur umfasst Server, Speicher, Netzwerke und Virtualisierungssoftware, die zusammenarbeiten, um Ressourcen über das Internet bereitzustellen. Unternehmen können durch Cloud Computing Infrastructure ihre IT-Kosten senken, da sie keine physische Hardware kaufen oder warten müssen, sondern stattdessen nur für die tatsächlich genutzten Ressourcen bezahlen. Zu den häufigsten Modellen gehören Infrastructure as a Service (IaaS), Platform as a Service (PaaS) und Software as a Service (SaaS), die jeweils unterschiedliche Dienstleistungen und Flexibilität bieten. Zusätzlich ermöglicht die Cloud eine skalierbare und flexible IT-Lösung, die es Unternehmen erlaubt, schnell auf sich ändernde Anforderungen zu reagieren.

Dirichlets Approximationstheorem

Das Dirichlet'sche Approximationstheorem ist ein fundamentales Resultat in der Zahlentheorie, das sich mit der Approximation reeller Zahlen durch rationale Zahlen beschäftigt. Es besagt, dass für jede reelle Zahl α\alphaα und jede positive ganze Zahl nnn eine rationale Zahl pq\frac{p}{q}qp​ existiert, so dass die folgende Ungleichung gilt:

∣α−pq∣<1nq2\left| \alpha - \frac{p}{q} \right| < \frac{1}{nq^2}​α−qp​​<nq21​

Dies bedeutet, dass man für jede reelle Zahl α\alphaα und jede gewünschte Genauigkeit 1n\frac{1}{n}n1​ eine rationale Approximation finden kann, deren Nenner nicht zu groß ist. Das Theorem hat weitreichende Anwendungen in der Diophantischen Approximation und der Theorie der irrationalen Zahlen. Es illustriert die Dichte der rationalen Zahlen in den reellen Zahlen und zeigt, dass sie, trotz der Unendlichkeit der reellen Zahlen, immer nahe genug an einer gegebenen reellen Zahl liegen können.