StudentsEducators

Plasmonic Waveguides

Plasmonic waveguides are structures that guide surface plasmons, which are coherent oscillations of free electrons at the interface between a metal and a dielectric material. These waveguides enable the confinement and transmission of light at dimensions smaller than the wavelength of the light itself, making them essential for applications in nanophotonics and optical communications. The unique properties of plasmonic waveguides arise from the interaction between electromagnetic waves and the collective oscillations of electrons in metals, leading to phenomena such as superlensing and enhanced light-matter interactions.

Typically, there are several types of plasmonic waveguides, including:

  • Metallic thin films: These can support surface plasmons and are often used in sensors.
  • Metal nanostructures: These include nanoparticles and nanorods that can manipulate light at the nanoscale.
  • Plasmonic slots: These are designed to enhance field confinement and can be used in integrated photonic circuits.

The effective propagation of surface plasmons is described by the dispersion relation, which depends on the permittivity of both the metal and the dielectric, typically represented in a simplified form as:

k=ωcεmεdεm+εdk = \frac{\omega}{c} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}}k=cω​εm​+εd​εm​εd​​​

where kkk is the wave

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Protein Crystallography Refinement

Protein crystallography refinement is a critical step in the process of determining the three-dimensional structure of proteins at atomic resolution. This process involves adjusting the initial model of the protein's structure to minimize the differences between the observed diffraction data and the calculated structure factors. The refinement is typically conducted using methods such as least-squares fitting and maximum likelihood estimation, which iteratively improve the model parameters, including atomic positions and thermal factors.

During this phase, several factors are considered to achieve an optimal fit, including geometric constraints (like bond lengths and angles) and chemical properties of the amino acids. The refinement process is essential for achieving a low R-factor, which is a measure of the agreement between the observed and calculated data, typically expressed as:

R=∑∣Fobs−Fcalc∣∑∣Fobs∣R = \frac{\sum | F_{\text{obs}} - F_{\text{calc}} |}{\sum | F_{\text{obs}} |}R=∑∣Fobs​∣∑∣Fobs​−Fcalc​∣​

where FobsF_{\text{obs}}Fobs​ represents the observed structure factors and FcalcF_{\text{calc}}Fcalc​ the calculated structure factors. Ultimately, successful refinement leads to a high-quality model that can provide insights into the protein's function and interactions.

H-Bridge Inverter Topology

The H-Bridge Inverter Topology is a crucial circuit design used to convert direct current (DC) into alternating current (AC). This topology consists of four switches, typically implemented with transistors, arranged in an 'H' shape, where two switches connect to the positive terminal and two to the negative terminal of the DC supply. By selectively turning these switches on and off, the inverter can create a sinusoidal output voltage that alternates between positive and negative values.

The operation of the H-bridge can be described using the switching sequences of the transistors, which allows for the generation of varying output waveforms. For instance, when switches S1S_1S1​ and S4S_4S4​ are closed, the output voltage is positive, while closing S2S_2S2​ and S3S_3S3​ produces a negative output. This flexibility makes the H-Bridge Inverter essential in applications such as motor drives and renewable energy systems, where efficient and controllable AC power is needed. The ability to modulate the output frequency and amplitude adds to its versatility in various electronic systems.

Majorana Fermions

Majorana fermions are a class of particles that are their own antiparticles, meaning that they fulfill the condition ψ=ψc\psi = \psi^cψ=ψc, where ψc\psi^cψc is the charge conjugate of the field ψ\psiψ. This unique property distinguishes them from ordinary fermions, such as electrons, which have distinct antiparticles. Majorana fermions arise in various contexts in theoretical physics, including in the study of neutrinos, where they could potentially explain the observed small masses of these elusive particles. Additionally, they have garnered significant attention in condensed matter physics, particularly in the context of topological superconductors, where they are theorized to emerge as excitations that could be harnessed for quantum computing due to their non-Abelian statistics and robustness against local perturbations. The experimental detection of Majorana fermions would not only enhance our understanding of fundamental particle physics but also offer promising avenues for the development of fault-tolerant quantum computing systems.

Weierstrass Function

The Weierstrass function is a classic example of a continuous function that is nowhere differentiable. It is defined as a series of sine functions, typically expressed in the form:

W(x)=∑n=0∞ancos⁡(bnπx)W(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)W(x)=n=0∑∞​ancos(bnπx)

where 0<a<10 < a < 10<a<1 and bbb is a positive odd integer, satisfying ab>1+3π2ab > 1+\frac{3\pi}{2}ab>1+23π​. The function is continuous everywhere due to the uniform convergence of the series, but its derivative does not exist at any point, showcasing the concept of fractal-like behavior in mathematics. This makes the Weierstrass function a pivotal example in the study of real analysis, particularly in understanding the intricacies of continuity and differentiability. Its pathological nature has profound implications in various fields, including mathematical analysis, chaos theory, and the understanding of fractals.

Neural Prosthetics

Neural prosthetics, also known as brain-computer interfaces (BCIs), are advanced devices designed to restore lost sensory or motor functions by directly interfacing with the nervous system. These prosthetics work by interpreting neural signals from the brain and translating them into commands for external devices, such as robotic limbs or computer cursors. The technology typically involves the implantation of electrodes that can detect neuronal activity, which is then processed using sophisticated algorithms to differentiate between different types of brain signals.

Some common applications of neural prosthetics include helping individuals with paralysis regain movement or allowing those with visual impairments to perceive their environment through sensory substitution techniques. Research in this field is rapidly evolving, with the potential to significantly improve the quality of life for many individuals suffering from neurological disorders or injuries. The integration of artificial intelligence and machine learning is further enhancing the precision and functionality of these devices, making them more responsive and user-friendly.

Microeconomic Elasticity

Microeconomic elasticity measures how responsive the quantity demanded or supplied of a good is to changes in various factors, such as price, income, or the prices of related goods. The most commonly discussed types of elasticity include price elasticity of demand, income elasticity of demand, and cross-price elasticity of demand.

  1. Price Elasticity of Demand: This measures the responsiveness of quantity demanded to a change in the price of the good itself. It is calculated as:
Ed=% change in quantity demanded% change in price E_d = \frac{\%\text{ change in quantity demanded}}{\%\text{ change in price}}Ed​=% change in price% change in quantity demanded​

If ∣Ed∣>1|E_d| > 1∣Ed​∣>1, demand is considered elastic; if ∣Ed∣<1|E_d| < 1∣Ed​∣<1, it is inelastic.

  1. Income Elasticity of Demand: This reflects how the quantity demanded changes in response to changes in consumer income. It is defined as:
Ey=% change in quantity demanded% change in income E_y = \frac{\%\text{ change in quantity demanded}}{\%\text{ change in income}}Ey​=% change in income% change in quantity demanded​
  1. Cross-Price Elasticity of Demand: This indicates how the quantity demanded of one good changes in response to a change in the price of another good, calculated as:
Exy=% change in quantity demanded of good X% change in price of good Y E_{xy} = \frac{\%\text{ change in quantity demanded of good X}}{\%\text{ change in price of good Y}}Exy​=% change in price of good Y% change in quantity demanded of good X​

Understanding these