StudentsEducators

Bragg Diffraction

Bragg Diffraction is a phenomenon that occurs when X-rays or neutrons are scattered by the atomic planes in a crystal lattice. The condition for constructive interference, which is necessary for observing this diffraction, is given by Bragg's Law, expressed mathematically as:

nλ=2dsin⁡θn\lambda = 2d\sin\thetanλ=2dsinθ

where nnn is an integer (the order of the diffraction), λ\lambdaλ is the wavelength of the incident radiation, ddd is the distance between the crystal planes, and θ\thetaθ is the angle of incidence. When these conditions are met, the scattered waves from different planes reinforce each other, producing a detectable intensity pattern. This technique is crucial in determining the crystal structure and arrangement of atoms in solid materials, making it a fundamental tool in fields such as materials science, chemistry, and solid-state physics. By analyzing the resulting diffraction patterns, scientists can infer important structural information about the material being studied.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Prospect Theory

Prospect Theory is a behavioral economic theory developed by Daniel Kahneman and Amos Tversky in 1979. It describes how individuals make decisions under risk and uncertainty, highlighting that people value gains and losses differently. Specifically, the theory posits that losses are felt more acutely than equivalent gains—this phenomenon is known as loss aversion. The value function in Prospect Theory is typically concave for gains and convex for losses, indicating diminishing sensitivity to changes in wealth.

Mathematically, the value function can be represented as:

v(x)={xαif x≥0−λ(−x)βif x<0v(x) = \begin{cases} x^\alpha & \text{if } x \geq 0 \\ -\lambda (-x)^\beta & \text{if } x < 0 \end{cases}v(x)={xα−λ(−x)β​if x≥0if x<0​

where α<1\alpha < 1α<1, β>1\beta > 1β>1, and λ>1\lambda > 1λ>1 indicates that losses loom larger than gains. Additionally, Prospect Theory introduces the concept of probability weighting, where people tend to overweigh small probabilities and underweigh large probabilities, leading to decisions that deviate from expected utility theory.

Zobrist Hashing

Zobrist Hashing is a technique used for efficiently computing hash values for game states, particularly in games like chess or checkers. The fundamental idea is to represent each piece on the board with a unique random bitstring, which allows for fast updates to the hash value when the game state changes. Specifically, the hash for the entire board is computed by using the XOR operation across the bitstrings of all pieces present, which gives a constant-time complexity for updates.

When a piece moves, instead of recalculating the hash from scratch, we simply XOR out the bitstring of the piece being moved and XOR in the bitstring of the new piece position. This property makes Zobrist Hashing particularly useful in scenarios where the game state changes frequently, as the computational overhead is minimized. Additionally, the randomness of the bitstrings reduces the chance of hash collisions, ensuring a more reliable representation of different game states.

Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation (TMS) is a non-invasive neuromodulation technique that uses magnetic fields to stimulate nerve cells in the brain. This method involves placing a coil on the scalp, which generates brief magnetic pulses that can penetrate the skull and induce electrical currents in specific areas of the brain. TMS is primarily used in the treatment of depression, particularly for patients who do not respond to traditional therapies like medication or psychotherapy.

The mechanism behind TMS involves the alteration of neuronal activity, which can enhance or inhibit brain function depending on the stimulation parameters used. Research has shown that TMS can lead to improvements in mood and cognitive function, and it is also being explored for its potential applications in treating various neurological and psychiatric disorders, such as anxiety and PTSD. Overall, TMS represents a promising area of research and clinical practice in modern neuroscience and mental health treatment.

Silicon Carbide Power Electronics

Silicon Carbide (SiC) power electronics refer to electronic devices and components made from silicon carbide, a semiconductor material that offers superior performance compared to traditional silicon. SiC devices can operate at higher voltages, temperatures, and frequencies, making them ideal for applications in electric vehicles, renewable energy systems, and power conversion technologies. One of the key advantages of SiC is its wide bandgap, which allows for greater energy efficiency and reduced heat generation. This leads to smaller, lighter systems with improved reliability and lower cooling requirements. Additionally, SiC technology contributes to lower energy losses, resulting in significant cost savings over time in various industrial applications. The adoption of SiC power electronics is expected to accelerate as industries seek to enhance performance and sustainability.

Gini Impurity

Gini Impurity is a measure used in decision trees to determine the quality of a split at each node. It quantifies the likelihood of a randomly chosen element being misclassified if it was randomly labeled according to the distribution of labels in the subset. The value of Gini Impurity ranges from 0 to 1, where 0 indicates that all elements belong to a single class (perfect purity) and 1 indicates maximum impurity (uniform distribution across classes).

Mathematically, Gini Impurity can be calculated using the formula:

Gini(D)=1−∑i=1Cpi2Gini(D) = 1 - \sum_{i=1}^{C} p_i^2Gini(D)=1−i=1∑C​pi2​

where pip_ipi​ is the proportion of instances labeled with class iii in dataset DDD, and CCC is the total number of classes. A lower Gini Impurity value means a better, more effective split, which helps in building more accurate decision trees. Therefore, during the training of decision trees, the algorithm seeks to minimize Gini Impurity at each node to improve classification accuracy.

Spin-Orbit Coupling

Spin-Orbit Coupling is a quantum mechanical phenomenon that occurs due to the interaction between a particle's intrinsic spin and its orbital motion. This coupling is particularly significant in systems with relativistic effects and plays a crucial role in the electronic properties of materials, such as in the behavior of electrons in atoms and solids. The strength of the spin-orbit coupling can lead to phenomena like spin splitting, where energy levels are separated according to the spin state of the electron.

Mathematically, the Hamiltonian for spin-orbit coupling can be expressed as:

HSO=ξL⋅SH_{SO} = \xi \mathbf{L} \cdot \mathbf{S}HSO​=ξL⋅S

where ξ\xiξ represents the coupling strength, L\mathbf{L}L is the orbital angular momentum vector, and S\mathbf{S}S is the spin angular momentum vector. This interaction not only affects the electronic band structure but also contributes to various physical phenomena, including the Rashba effect and topological insulators, highlighting its importance in modern condensed matter physics.