The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is widely used for estimating the volatility of financial time series data. This model captures the phenomenon where the variance of the error terms, or volatility, is not constant over time but rather depends on past values of the series and past errors. The GARCH model is formulated as follows:
where:
By modeling volatility in this way, the GARCH framework allows for better risk assessment and forecasting in financial markets, as it adapts to changing market conditions. This adaptability is crucial for investors and risk managers when making informed decisions based on expected future volatility.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.