Kalman Smoothers are advanced statistical algorithms used for estimating the states of a dynamic system over time, particularly when dealing with noisy observations. Unlike the basic Kalman Filter, which provides estimates based solely on past and current observations, Kalman Smoothers utilize future observations to refine these estimates. This results in a more accurate understanding of the system's states at any given time. The smoother operates by first applying the Kalman Filter to generate estimates and then adjusting these estimates by considering the entire observation sequence. Mathematically, this process can be expressed through the use of state transition models and measurement equations, allowing for optimal estimation in the presence of uncertainty. In practice, Kalman Smoothers are widely applied in fields such as robotics, economics, and signal processing, where accurate state estimation is crucial.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.