Laplace's equation is a second-order partial differential equation given by
where is the Laplacian operator and is a scalar potential function. Solutions to Laplace's equation, known as harmonic functions, exhibit several important properties, including smoothness and the mean value property, which states that the value of a harmonic function at a point is equal to the average of its values over any sphere centered at that point.
These solutions are crucial in various fields such as electrostatics, fluid dynamics, and potential theory, as they describe systems in equilibrium. Common methods for finding solutions include separation of variables, Fourier series, and Green's functions. Additionally, boundary conditions play a critical role in determining the unique solution in a given domain, leading to applications in engineering and physics.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.