The magnetocaloric effect refers to the phenomenon where a material experiences a change in temperature when exposed to a changing magnetic field. When a magnetic field is applied to certain materials, their magnetic dipoles align, resulting in a decrease in entropy and an increase in temperature. Conversely, when the magnetic field is removed, the dipoles return to a disordered state, leading to a drop in temperature. This effect is particularly pronounced in specific materials known as magnetocaloric materials, which can be used in magnetic refrigeration technologies, offering an environmentally friendly alternative to traditional gas-compression refrigeration methods. The efficiency of this effect can be modeled using thermodynamic principles, where the change in temperature () can be related to the change in magnetic field () and the material properties.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.