StudentsEducators

Manacher’s Palindrome

Manacher's Algorithm is an efficient method for finding the longest palindromic substring in a given string in linear time, specifically O(n)O(n)O(n). This algorithm works by transforming the original string to handle even-length palindromes uniformly, typically by inserting a special character (like #) between every character and at the ends. The main idea is to maintain an array that records the radius of palindromes centered at each position and to use symmetry properties of palindromes to minimize unnecessary comparisons.

The algorithm employs two key variables: the center of the rightmost palindrome found so far and the right edge of that palindrome. When processing each character, it uses previously computed values to skip checks whenever possible, thus optimizing the palindrome search process. Ultimately, the algorithm returns the longest palindromic substring efficiently, making it a crucial technique in string processing tasks.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Endogenous Growth Theory

Endogenous Growth Theory is an economic theory that emphasizes the role of internal factors in driving economic growth, rather than external influences. It posits that economic growth is primarily the result of innovation, human capital accumulation, and knowledge spillovers, which are all influenced by policies and decisions made within an economy. Unlike traditional growth models, which often assume diminishing returns to capital, endogenous growth theory suggests that investments in research and development (R&D) and education can lead to sustained growth due to increasing returns to scale.

Key aspects of this theory include:

  • Human Capital: The knowledge and skills of the workforce play a critical role in enhancing productivity and fostering innovation.
  • Innovation: Firms and individuals engage in research and development, leading to new technologies that drive economic expansion.
  • Knowledge Spillovers: Benefits of innovation can spread across firms and industries, contributing to overall economic growth.

This framework helps explain how policies aimed at education and innovation can have long-lasting effects on an economy's growth trajectory.

Soft-Matter Self-Assembly

Soft-matter self-assembly refers to the spontaneous organization of soft materials, such as polymers, lipids, and colloids, into structured arrangements without the need for external guidance. This process is driven by thermodynamic and kinetic factors, where the components interact through weak forces like van der Waals forces, hydrogen bonds, and hydrophobic interactions. The result is the formation of complex structures, such as micelles, vesicles, and gels, which can exhibit unique properties useful in various applications, including drug delivery and nanotechnology.

Key aspects of soft-matter self-assembly include:

  • Scalability: The techniques can be applied at various scales, from molecular to macroscopic levels.
  • Reversibility: Many self-assembled structures can be disassembled and reassembled, allowing for dynamic systems.
  • Functionality: The assembled structures often possess emergent properties not found in the individual components.

Overall, soft-matter self-assembly represents a fascinating area of research that bridges the fields of physics, chemistry, and materials science.

Markov Blanket

A Markov Blanket is a concept from probability theory and statistics that defines a set of nodes in a graphical model that shields a specific node from the influence of the rest of the network. More formally, for a given node XXX, its Markov Blanket consists of its parents, children, and the parents of its children. This means that if you know the state of the Markov Blanket, the state of XXX is conditionally independent of all other nodes in the network. This property is crucial in simplifying the computations in probabilistic models, allowing for effective learning and inference. The Markov Blanket can be particularly useful in fields like machine learning, where understanding the dependencies between variables is essential for building accurate predictive models.

Graph Isomorphism

Graph Isomorphism is a concept in graph theory that describes when two graphs can be considered the same in terms of their structure, even if their representations differ. Specifically, two graphs G1=(V1,E1)G_1 = (V_1, E_1)G1​=(V1​,E1​) and G2=(V2,E2)G_2 = (V_2, E_2)G2​=(V2​,E2​) are isomorphic if there exists a bijective function f:V1→V2f: V_1 \rightarrow V_2f:V1​→V2​ such that any two vertices uuu and vvv in G1G_1G1​ are adjacent if and only if the corresponding vertices f(u)f(u)f(u) and f(v)f(v)f(v) in G2G_2G2​ are also adjacent. This means that the connectivity and relationships between the vertices are preserved under the mapping.

Isomorphic graphs have the same number of vertices and edges, and their degree sequences (the list of vertex degrees) are identical. However, the challenge lies in efficiently determining whether two graphs are isomorphic, as no polynomial-time algorithm is known for this problem, and it is a significant topic in computational complexity.

Sunk Cost

Sunk cost refers to expenses that have already been incurred and cannot be recovered. This concept is crucial in decision-making, as it highlights the fallacy of allowing past costs to influence current choices. For instance, if a company has invested $100,000 in a project but realizes that it is no longer viable, the sunk cost should not affect the decision to continue funding the project. Instead, decisions should be based on future costs and potential benefits. Ignoring sunk costs can lead to better economic choices and a more rational approach to resource allocation. In mathematical terms, if SSS represents sunk costs, the decision to proceed should rely on the expected future value VVV rather than SSS.

Topological Materials

Topological materials are a fascinating class of materials that exhibit unique electronic properties due to their topological order, which is a property that remains invariant under continuous deformations. These materials can host protected surface states that are robust against impurities and disorders, making them highly desirable for applications in quantum computing and spintronics. Their electronic band structure can be characterized by topological invariants, which are mathematical quantities that classify the different phases of the material. For instance, in topological insulators, the bulk of the material is insulating while the surface states are conductive, a phenomenon described by the bulk-boundary correspondence. This extraordinary behavior arises from the interplay between symmetry and quantum effects, leading to potential advancements in technology through their use in next-generation electronic devices.