StudentsEducators

Microeconomic Elasticity

Microeconomic elasticity measures how responsive the quantity demanded or supplied of a good is to changes in various factors, such as price, income, or the prices of related goods. The most commonly discussed types of elasticity include price elasticity of demand, income elasticity of demand, and cross-price elasticity of demand.

  1. Price Elasticity of Demand: This measures the responsiveness of quantity demanded to a change in the price of the good itself. It is calculated as:
Ed=% change in quantity demanded% change in price E_d = \frac{\%\text{ change in quantity demanded}}{\%\text{ change in price}}Ed​=% change in price% change in quantity demanded​

If ∣Ed∣>1|E_d| > 1∣Ed​∣>1, demand is considered elastic; if ∣Ed∣<1|E_d| < 1∣Ed​∣<1, it is inelastic.

  1. Income Elasticity of Demand: This reflects how the quantity demanded changes in response to changes in consumer income. It is defined as:
Ey=% change in quantity demanded% change in income E_y = \frac{\%\text{ change in quantity demanded}}{\%\text{ change in income}}Ey​=% change in income% change in quantity demanded​
  1. Cross-Price Elasticity of Demand: This indicates how the quantity demanded of one good changes in response to a change in the price of another good, calculated as:
Exy=% change in quantity demanded of good X% change in price of good Y E_{xy} = \frac{\%\text{ change in quantity demanded of good X}}{\%\text{ change in price of good Y}}Exy​=% change in price of good Y% change in quantity demanded of good X​

Understanding these

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Computational Social Science

Computational Social Science is an interdisciplinary field that merges social science with computational methods to analyze and understand complex social phenomena. By utilizing large-scale data sets, often derived from social media, surveys, or public records, researchers can apply computational techniques such as machine learning, network analysis, and simulations to uncover patterns and trends in human behavior. This field enables the exploration of questions that traditional social science methods may struggle to address, emphasizing the role of big data in social research. For instance, social scientists can model interactions within social networks to predict outcomes like the spread of information or the emergence of social norms. Overall, Computational Social Science fosters a deeper understanding of societal dynamics through quantitative analysis and innovative methodologies.

Brushless Dc Motor Control

Brushless DC (BLDC) motors are widely used in various applications due to their high efficiency and reliability. Unlike traditional brushed motors, BLDC motors utilize electronic controllers to manage the rotation of the motor, eliminating the need for brushes and commutators. This results in reduced wear and tear, lower maintenance requirements, and enhanced performance.

The control of a BLDC motor typically involves the use of pulse width modulation (PWM) to regulate the voltage and current supplied to the motor phases, allowing for precise speed and torque control. The motor's position is monitored using sensors, such as Hall effect sensors, to determine the rotor's location and ensure the correct timing of the electrical phases. This feedback mechanism is crucial for achieving optimal performance, as it allows the controller to adjust the input based on the motor's actual speed and load conditions.

Few-Shot Learning

Few-Shot Learning (FSL) is a subfield of machine learning that focuses on training models to recognize new classes with very limited labeled data. Unlike traditional approaches that require large datasets for each category, FSL seeks to generalize from only a few examples, typically ranging from one to a few dozen. This is particularly useful in scenarios where obtaining labeled data is costly or impractical.

In FSL, the model often employs techniques such as meta-learning, where it learns to learn from a variety of tasks, allowing it to adapt quickly to new ones. Common methods include using prototypical networks, which compute a prototype representation for each class based on the limited examples, or employing transfer learning where a pre-trained model is fine-tuned on the few available samples. Overall, Few-Shot Learning aims to mimic human-like learning capabilities, enabling machines to perform tasks with minimal data input.

Kolmogorov Axioms

The Kolmogorov Axioms form the foundational framework for probability theory, established by the Russian mathematician Andrey Kolmogorov in the 1930s. These axioms define a probability space (S,F,P)(S, \mathcal{F}, P)(S,F,P), where SSS is the sample space, F\mathcal{F}F is a σ-algebra of events, and PPP is the probability measure. The three main axioms are:

  1. Non-negativity: For any event A∈FA \in \mathcal{F}A∈F, the probability P(A)P(A)P(A) is always non-negative:

P(A)≥0P(A) \geq 0P(A)≥0

  1. Normalization: The probability of the entire sample space equals 1:

P(S)=1P(S) = 1P(S)=1

  1. Countable Additivity: For any countable collection of mutually exclusive events A1,A2,…∈FA_1, A_2, \ldots \in \mathcal{F}A1​,A2​,…∈F, the probability of their union is equal to the sum of their probabilities:

P(⋃i=1∞Ai)=∑i=1∞P(Ai)P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)P(⋃i=1∞​Ai​)=∑i=1∞​P(Ai​)

These axioms provide the basis for further developments in probability theory and allow for rigorous manipulation of probabilities

Fourier Coefficient Convergence

Fourier Coefficient Convergence refers to the behavior of the Fourier coefficients of a function as the number of terms in its Fourier series representation increases. Given a periodic function f(x)f(x)f(x), its Fourier coefficients ana_nan​ and bnb_nbn​ are defined as:

an=1T∫0Tf(x)cos⁡(2πnxT) dxa_n = \frac{1}{T} \int_0^T f(x) \cos\left(\frac{2\pi n x}{T}\right) \, dxan​=T1​∫0T​f(x)cos(T2πnx​)dx bn=1T∫0Tf(x)sin⁡(2πnxT) dxb_n = \frac{1}{T} \int_0^T f(x) \sin\left(\frac{2\pi n x}{T}\right) \, dxbn​=T1​∫0T​f(x)sin(T2πnx​)dx

where TTT is the period of the function. The convergence of these coefficients is crucial for determining how well the Fourier series approximates the function. Specifically, if the function is piecewise continuous and has a finite number of discontinuities, the Fourier series converges to the function at all points where it is continuous and to the average of the left-hand and right-hand limits at points of discontinuity. This convergence is significant in various applications, including signal processing and solving differential equations, where approximating complex functions with simpler sinusoidal components is essential.

Schottky Diode

A Schottky diode is a type of semiconductor diode characterized by its low forward voltage drop and fast switching speeds. Unlike traditional p-n junction diodes, the Schottky diode is formed by the contact between a metal and a semiconductor, typically n-type silicon. This metal-semiconductor junction allows for efficient charge carrier movement, resulting in a forward voltage drop of approximately 0.15 to 0.45 volts, significantly lower than that of conventional diodes.

The key advantages of Schottky diodes include their high efficiency, low reverse recovery time, and ability to handle high frequencies, making them ideal for applications in power supplies, RF circuits, and as rectifiers in solar panels. However, they have a higher reverse leakage current and are generally not suitable for high-voltage applications. The performance characteristics of Schottky diodes can be mathematically described using the Shockley diode equation, which takes into account the current flowing through the diode as a function of voltage and temperature.