StudentsEducators

Nyquist Sampling Theorem

The Nyquist Sampling Theorem, named after Harry Nyquist, is a fundamental principle in signal processing and communications that establishes the conditions under which a continuous signal can be accurately reconstructed from its samples. The theorem states that in order to avoid aliasing and to perfectly reconstruct a band-limited signal, it must be sampled at a rate that is at least twice the maximum frequency present in the signal. This minimum sampling rate is referred to as the Nyquist rate.

Mathematically, if a signal contains no frequencies higher than fmaxf_{\text{max}}fmax​, it should be sampled at a rate fsf_sfs​ such that:

fs≥2fmaxf_s \geq 2 f_{\text{max}}fs​≥2fmax​

If the sampling rate is below this threshold, higher frequency components can misrepresent themselves as lower frequencies, leading to distortion known as aliasing. Therefore, adhering to the Nyquist Sampling Theorem is crucial for accurate digital representation and transmission of analog signals.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Solow Growth

The Solow Growth Model, developed by economist Robert Solow in the 1950s, is a fundamental framework for understanding long-term economic growth. It emphasizes the roles of capital accumulation, labor force growth, and technological advancement as key drivers of productivity and economic output. The model is built around the production function, typically represented as Y=F(K,L)Y = F(K, L)Y=F(K,L), where YYY is output, KKK is the capital stock, and LLL is labor.

A critical insight of the Solow model is the concept of diminishing returns to capital, which suggests that as more capital is added, the additional output produced by each new unit of capital decreases. This leads to the idea of a steady state, where the economy grows at a constant rate due to technological progress, while capital per worker stabilizes. Overall, the Solow Growth Model provides a framework for analyzing how different factors contribute to economic growth and the long-term implications of these dynamics on productivity.

Data-Driven Decision Making

Data-Driven Decision Making (DDDM) refers to the process of making decisions based on data analysis and interpretation rather than intuition or personal experience. This approach involves collecting relevant data from various sources, analyzing it to extract meaningful insights, and then using those insights to guide business strategies and operational practices. By leveraging quantitative and qualitative data, organizations can identify trends, forecast outcomes, and enhance overall performance. Key benefits of DDDM include improved accuracy in forecasting, increased efficiency in operations, and a more objective basis for decision-making. Ultimately, this method fosters a culture of continuous improvement and accountability, ensuring that decisions are aligned with measurable objectives.

Van’T Hoff

Jacobus Henricus van 't Hoff war ein niederländischer Chemiker, der als einer der Begründer der modernen chemischen Thermodynamik gilt. Er ist bekannt für seine Arbeiten zur Dynamik chemischer Reaktionen und für die Formulierung des Van’t Hoff-Gesetzes, das den Zusammenhang zwischen der Temperatur und der Gleichgewichtskonstanten chemischer Reaktionen beschreibt. Van ’t Hoff entwickelte auch die Van’t Hoff-Isotherme, die in der physikalischen Chemie verwendet wird, um die Beziehung zwischen Druck, Temperatur und Volumen eines idealen Gases zu beschreiben. Außerdem trug er zur Stereochemie bei, indem er die räumliche Anordnung von Atomen in Molekülen untersuchte. Sein Beitrag zur Wissenschaft wurde 1901 mit dem ersten Nobelpreis für Chemie anerkannt, was seine bedeutende Rolle in der chemischen Forschung unterstreicht.

Szemerédi’S Theorem

Szemerédi’s Theorem is a fundamental result in combinatorial number theory, which states that any subset of the natural numbers with positive upper density contains arbitrarily long arithmetic progressions. In more formal terms, if a set A⊆NA \subseteq \mathbb{N}A⊆N has a positive upper density, defined as

lim sup⁡n→∞∣A∩{1,2,…,n}∣n>0,\limsup_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n} > 0,n→∞limsup​n∣A∩{1,2,…,n}∣​>0,

then AAA contains an arithmetic progression of length kkk for any positive integer kkk. This theorem has profound implications in various fields, including additive combinatorics and theoretical computer science. Notably, it highlights the richness of structure in sets of integers, demonstrating that even seemingly random sets can exhibit regular patterns. Szemerédi's Theorem was proven in 1975 by Endre Szemerédi and has inspired a wealth of research into the properties of integers and sequences.

Maxwell’S Equations

Maxwell's Equations are a set of four fundamental equations that describe how electric and magnetic fields interact and propagate through space. They are the cornerstone of classical electromagnetism and can be stated as follows:

  1. Gauss's Law for Electricity: It relates the electric field E\mathbf{E}E to the charge density ρ\rhoρ by stating that the electric flux through a closed surface is proportional to the enclosed charge:
∇⋅E=ρϵ0 \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}∇⋅E=ϵ0​ρ​
  1. Gauss's Law for Magnetism: This equation states that there are no magnetic monopoles; the magnetic field B\mathbf{B}B has no beginning or end:
∇⋅B=0 \nabla \cdot \mathbf{B} = 0∇⋅B=0
  1. Faraday's Law of Induction: It shows how a changing magnetic field induces an electric field:
∇×E=−∂B∂t \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}∇×E=−∂t∂B​
  1. Ampère-Maxwell Law: This law relates the magnetic field to the electric current and the change in electric field:
∇×B=μ0J+μ0 \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0∇×B=μ0​J+μ0​

Organic Field-Effect Transistor Physics

Organic Field-Effect Transistors (OFETs) are a type of transistor that utilizes organic semiconductor materials to control electrical current. Unlike traditional inorganic semiconductors, OFETs rely on the movement of charge carriers, such as holes or electrons, through organic compounds. The operation of an OFET is based on the application of an electric field, which induces a channel of charge carriers in the organic layer between the source and drain electrodes. Key parameters of OFETs include mobility, threshold voltage, and subthreshold slope, which are influenced by factors like material purity and device architecture.

The basic structure of an OFET consists of a gate, a dielectric layer, an organic semiconductor layer, and source and drain electrodes. The performance of these devices can be described by the equation:

ID=μCoxWL(VGS−Vth)2I_D = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2ID​=μCox​LW​(VGS​−Vth​)2

where IDI_DID​ is the drain current, μ\muμ is the carrier mobility, CoxC_{ox}Cox​ is the gate capacitance per unit area, WWW and LLL are the width and length of the channel, and VGSV_{GS}VGS​ is the gate-source voltage with VthV_{th}Vth​ as the threshold voltage. The unique properties of organic materials, such as flexibility and low processing temperatures, make OFET