StudentsEducators

Polymer Electrolyte Membranes

Polymer Electrolyte Membranes (PEMs) are crucial components in various electrochemical devices, particularly in fuel cells and electrolyzers. These membranes are made from specially designed polymers that conduct protons (H+H^+H+) while acting as insulators for electrons, which allows them to facilitate electrochemical reactions efficiently. The most common type of PEM is based on sulfonated tetrafluoroethylene copolymers, such as Nafion.

PEMs enable the conversion of chemical energy into electrical energy in fuel cells, where hydrogen and oxygen react to produce water and electricity. The membranes also play a significant role in maintaining the separation of reactants, thereby enhancing the overall efficiency and performance of the system. Key properties of PEMs include ionic conductivity, chemical stability, and mechanical strength, which are essential for long-term operation in aggressive environments.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Molecular Docking Scoring

Molecular docking scoring is a computational technique used to predict the interaction strength between a small molecule (ligand) and a target protein (receptor). This process involves calculating a binding affinity score that indicates how well the ligand fits into the binding site of the protein. The scoring functions can be categorized into three main types: force-field based, empirical, and knowledge-based scoring functions.

Each scoring method utilizes different algorithms and parameters to estimate the potential interactions, such as hydrogen bonds, van der Waals forces, and electrostatic interactions. The final score is often a combination of these interaction energies, expressed mathematically as:

Binding Affinity=Einteractions−Esolvation\text{Binding Affinity} = E_{\text{interactions}} - E_{\text{solvation}}Binding Affinity=Einteractions​−Esolvation​

where EinteractionsE_{\text{interactions}}Einteractions​ represents the energy from favorable interactions, and EsolvationE_{\text{solvation}}Esolvation​ accounts for the desolvation penalty. Accurate scoring is crucial for the success of drug design, as it helps identify promising candidates for further experimental evaluation.

Thermal Expansion

Thermal expansion refers to the tendency of matter to change its shape, area, and volume in response to a change in temperature. When a substance is heated, its particles gain kinetic energy and move apart, resulting in an increase in size. This phenomenon can be observed in solids, liquids, and gases, but the degree of expansion varies among these states of matter. The mathematical representation of linear thermal expansion is given by the formula:

ΔL=L0⋅α⋅ΔT\Delta L = L_0 \cdot \alpha \cdot \Delta TΔL=L0​⋅α⋅ΔT

where ΔL\Delta LΔL is the change in length, L0L_0L0​ is the original length, α\alphaα is the coefficient of linear expansion, and ΔT\Delta TΔT is the change in temperature. In practical applications, thermal expansion must be considered in engineering and construction to prevent structural failures, such as cracks in bridges or buildings that experience temperature fluctuations.

Berry Phase

The Berry phase is a geometric phase acquired over the course of a cycle when a system is subjected to adiabatic (slow) changes in its parameters. When a quantum system is prepared in an eigenstate of a Hamiltonian that changes slowly, the state evolves not only in time but also acquires an additional phase factor, which is purely geometric in nature. This phase shift can be expressed mathematically as:

γ=i∮C⟨ψn(R)∣∇Rψn(R)⟩⋅dR\gamma = i \oint_C \langle \psi_n(\mathbf{R}) | \nabla_{\mathbf{R}} \psi_n(\mathbf{R}) \rangle \cdot d\mathbf{R}γ=i∮C​⟨ψn​(R)∣∇R​ψn​(R)⟩⋅dR

where γ\gammaγ is the Berry phase, ψn\psi_nψn​ is the eigenstate associated with the Hamiltonian parameterized by R\mathbf{R}R, and the integral is taken over a closed path CCC in parameter space. The Berry phase has profound implications in various fields such as quantum mechanics, condensed matter physics, and even in geometric phases in classical systems. Notably, it plays a significant role in phenomena like the quantum Hall effect and topological insulators, showcasing the deep connection between geometry and physical properties.

Cpt Symmetry And Violations

CPT symmetry refers to the combined symmetry of Charge conjugation (C), Parity transformation (P), and Time reversal (T). In essence, CPT symmetry states that the laws of physics should remain invariant when all three transformations are applied simultaneously. This principle is fundamental to quantum field theory and underlies many conservation laws in particle physics. However, certain experiments, particularly those involving neutrinos, suggest potential violations of this symmetry. Such violations could imply new physics beyond the Standard Model, leading to significant implications for our understanding of the universe's fundamental interactions. The exploration of CPT violations challenges our current models and opens avenues for further research in theoretical physics.

Bagehot’S Rule

Bagehot's Rule is a principle that originated from the observations of the British journalist and economist Walter Bagehot in the 19th century. It states that in times of financial crisis, a central bank should lend freely to solvent institutions, but at a penalty rate, which is typically higher than the market rate. This approach aims to prevent panic and maintain liquidity in the financial system while discouraging reckless borrowing.

The essence of Bagehot's Rule can be summarized in three key points:

  1. Lend Freely: Central banks should provide liquidity to institutions facing temporary distress.
  2. To Solvent Institutions: Support should only be given to institutions that are fundamentally sound but facing short-term liquidity issues.
  3. At a Penalty Rate: The rate charged should be above the normal market rate to discourage moral hazard and excessive risk-taking.

Overall, Bagehot's Rule emphasizes the importance of maintaining stability in the financial system by balancing support with caution.

Digital Marketing Analytics

Digital Marketing Analytics refers to the systematic evaluation and interpretation of data generated from digital marketing campaigns. It involves the collection, measurement, and analysis of data from various online channels, such as social media, email, websites, and search engines, to understand user behavior and campaign effectiveness. By utilizing tools like Google Analytics, marketers can track key performance indicators (KPIs) such as conversion rates, click-through rates, and return on investment (ROI). This data-driven approach enables businesses to make informed decisions, optimize their marketing strategies, and improve customer engagement. Ultimately, the goal of Digital Marketing Analytics is to enhance overall marketing performance and drive business growth through evidence-based insights.