The Quantum Spin Hall Effect (QSHE) is a quantum phenomenon observed in certain two-dimensional materials where an electric current can flow without dissipation due to the spin of the electrons. In this effect, electrons with opposite spins are deflected in opposite directions when an external electric field is applied, leading to the generation of spin-polarized edge states. This behavior occurs due to strong spin-orbit coupling, which couples the spin and momentum of the electrons, allowing for the conservation of spin while facilitating charge transport.
The QSHE can be mathematically described using the Hamiltonian that incorporates spin-orbit interaction, resulting in distinct energy bands for spin-up and spin-down states. The edge states are protected from backscattering by time-reversal symmetry, making the QSHE a promising phenomenon for applications in spintronics and quantum computing, where information is processed using the spin of electrons rather than their charge.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.