StudentsEducators

Supply Shocks

Supply shocks refer to unexpected events that significantly disrupt the supply of goods and services in an economy. These shocks can be either positive or negative; a negative supply shock typically results in a sudden decrease in supply, leading to higher prices and potential shortages, while a positive supply shock can lead to an increase in supply, often resulting in lower prices. Common causes of supply shocks include natural disasters, geopolitical events, technological changes, and sudden changes in regulation. The impact of a supply shock can be analyzed using the basic supply and demand framework, where a shift in the supply curve alters the equilibrium price and quantity in the market. For instance, if a negative supply shock occurs, the supply curve shifts leftward, which can be represented as:

S1→S2S_1 \rightarrow S_2S1​→S2​

This shift results in a new equilibrium point, where the price rises and the quantity supplied decreases, illustrating the consequences of the shock on the economy.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Prisoner’S Dilemma

The Prisoner’s Dilemma is a fundamental problem in game theory that illustrates a situation where two individuals can either choose to cooperate or betray each other. The classic scenario involves two prisoners who are arrested and interrogated separately. If both prisoners choose to cooperate (remain silent), they receive a light sentence. However, if one betrays the other while the other remains silent, the betrayer goes free while the silent accomplice receives a harsh sentence. If both betray each other, they both get moderate sentences.

Mathematically, the outcomes can be represented as follows:

  • Cooperate (C): Both prisoners get a light sentence (2 years each).
  • Betray (B): One goes free (0 years), the other gets a severe sentence (10 years).
  • Both betray: Both receive a moderate sentence (5 years each).

The dilemma arises because rational self-interested players will often choose to betray, leading to a worse outcome for both compared to mutual cooperation. This scenario highlights the conflict between individual rationality and collective benefit, demonstrating how self-interest can lead to suboptimal outcomes in decision-making.

Isospin Symmetry

Isospin symmetry is a concept in particle physics that describes the invariance of strong interactions under the exchange of different types of nucleons, specifically protons and neutrons. It is based on the idea that these particles can be treated as two states of a single entity, known as the isospin multiplet. The symmetry is represented mathematically using the SU(2) group, where the proton and neutron are analogous to the up and down quarks in the quark model.

In this framework, the proton is assigned an isospin value of +12+\frac{1}{2}+21​ and the neutron −12-\frac{1}{2}−21​. This allows for the prediction of various nuclear interactions and the existence of particles, such as pions, which are treated as isospin triplets. While isospin symmetry is not perfectly conserved due to electromagnetic interactions, it provides a useful approximation that simplifies the understanding of nuclear forces.

Quantum Well Laser Efficiency

Quantum well lasers are a type of semiconductor laser that utilize quantum wells to confine charge carriers and photons, which enhances their efficiency. The efficiency of these lasers can be attributed to several factors, including the reduced threshold current, improved gain characteristics, and better thermal management. Due to the quantum confinement effect, the energy levels of electrons and holes are quantized, which leads to a higher probability of radiative recombination. This results in a lower threshold current IthI_{th}Ith​ and a higher output power PPP. The efficiency can be mathematically expressed as the ratio of the output power to the input electrical power:

η=PoutPin\eta = \frac{P_{out}}{P_{in}}η=Pin​Pout​​

where η\etaη is the efficiency, PoutP_{out}Pout​ is the optical output power, and PinP_{in}Pin​ is the electrical input power. Improved design and materials for quantum well structures can further enhance efficiency, making them a popular choice in applications such as telecommunications and laser diodes.

Overlapping Generations

The Overlapping Generations (OLG) model is a key framework in economic theory that describes how different generations coexist and interact within an economy. In this model, individuals live for two periods: as young and old. Young individuals work and save, while the old depend on their savings and possibly on transfers from the younger generation. This framework highlights important economic dynamics such as intergenerational transfers, savings behavior, and the effects of public policies on different age groups.

A central aspect of the OLG model is its ability to illustrate economic growth and capital accumulation, as well as the implications of demographic changes on overall economic performance. The interactions between generations can lead to complex outcomes, particularly when considering factors like social security, pensions, and the sustainability of economic policies over time.

Red-Black Tree Insertions

Inserting a node into a Red-Black Tree involves a series of steps to maintain the tree's properties, which ensure balance. Initially, the new node is inserted as a red leaf, maintaining the binary search tree property. After the insertion, a series of color and rotation adjustments may be necessary to restore the Red-Black properties:

  1. Root Property: The root must always be black.
  2. Red Property: Red nodes cannot have red children (no two consecutive red nodes).
  3. Depth Property: Every path from a node to its descendant leaves must have the same number of black nodes.

If any of these properties are violated after the insertion, the tree is adjusted through specific operations, including rotations (left or right) and recoloring. The process continues until the tree satisfies all properties, ensuring that the tree remains approximately balanced, leading to efficient search, insertion, and deletion operations with a time complexity of O(log⁡n)O(\log n)O(logn).

Cournot Model

The Cournot Model is an economic theory that describes how firms compete in an oligopolistic market by deciding the quantity of a homogeneous product to produce. In this model, each firm chooses its output level qiq_iqi​ simultaneously, with the aim of maximizing its profit, given the output levels of its competitors. The market price PPP is determined by the total quantity produced by all firms, represented as Q=q1+q2+...+qnQ = q_1 + q_2 + ... + q_nQ=q1​+q2​+...+qn​, where nnn is the number of firms.

The firms face a downward-sloping demand curve, which implies that the price decreases as total output increases. The equilibrium in the Cournot Model is achieved when each firm’s output decision is optimal, considering the output decisions of the other firms, leading to a Nash Equilibrium. In this equilibrium, no firm can increase its profit by unilaterally changing its output, resulting in a stable market structure.