StudentsEducators

Bargaining Nash

The Bargaining Nash solution, derived from Nash's bargaining theory, is a fundamental concept in cooperative game theory that deals with the negotiation process between two or more parties. It provides a method for determining how to divide a surplus or benefit based on certain fairness axioms. The solution is characterized by two key properties: efficiency, meaning that the agreement maximizes the total benefit available to the parties, and symmetry, which ensures that if the parties are identical, they should receive identical outcomes.

Mathematically, if we denote the utility levels of parties as u1u_1u1​ and u2u_2u2​, the Nash solution can be expressed as maximizing the product of their utilities above their disagreement points d1d_1d1​ and d2d_2d2​:

max⁡(u1,u2)(u1−d1)(u2−d2)\max_{(u_1, u_2)} (u_1 - d_1)(u_2 - d_2)(u1​,u2​)max​(u1​−d1​)(u2​−d2​)

This framework allows for the consideration of various negotiation factors, including the parties' alternatives and the inherent fairness in the distribution of resources. The Nash bargaining solution is widely applicable in economics, political science, and any situation where cooperative negotiations are essential.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Red-Black Tree

A Red-Black Tree is a type of self-balancing binary search tree that maintains its balance through a set of properties that regulate the colors of its nodes. Each node is colored either red or black, and the tree satisfies the following key properties:

  1. The root node is always black.
  2. Every leaf node (NIL) is considered black.
  3. If a node is red, both of its children must be black (no two red nodes can be adjacent).
  4. Every path from a node to its descendant NIL nodes must contain the same number of black nodes.

These properties ensure that the tree remains approximately balanced, providing efficient performance for insertion, deletion, and search operations, all of which run in O(log⁡n)O(\log n)O(logn) time complexity. Consequently, Red-Black Trees are widely utilized in various applications, including associative arrays and databases, due to their balanced nature and efficiency.

Dark Matter

Dark Matter refers to a mysterious and invisible substance that makes up approximately 27% of the universe's total mass-energy content. Unlike ordinary matter, which consists of atoms and can emit, absorb, or reflect light, dark matter does not interact with electromagnetic forces, making it undetectable by conventional means. Its presence is inferred through gravitational effects on visible matter, radiation, and the large-scale structure of the universe. For instance, the rotation curves of galaxies demonstrate that stars orbiting the outer regions of galaxies move at much higher speeds than would be expected based on the visible mass alone, suggesting the existence of additional unseen mass.

Despite extensive research, the precise nature of dark matter remains unknown, with several candidates proposed, including Weakly Interacting Massive Particles (WIMPs) and axions. Understanding dark matter is crucial for cosmology and could lead to new insights into the fundamental workings of the universe.

Jordan Form

The Jordan Form, also known as the Jordan canonical form, is a representation of a linear operator or matrix that simplifies many problems in linear algebra. Specifically, it transforms a matrix into a block diagonal form, where each block, called a Jordan block, corresponds to an eigenvalue of the matrix. A Jordan block for an eigenvalue λ\lambdaλ with size nnn is defined as:

Jn(λ)=(λ10⋯00λ1⋯000λ⋯0⋮⋮⋮⋱1000⋯λ)J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}Jn​(λ)=​λ00⋮0​1λ0⋮0​01λ⋮0​⋯⋯⋯⋱⋯​0001λ​​

This form is particularly useful as it provides insight into the structure of the linear operator, such as its eigenvalues, algebraic multiplicities, and geometric multiplicities. The Jordan Form is unique up to the order of the Jordan blocks, making it an essential tool for understanding the behavior of matrices under various operations, such as exponentiation and diagonalization.

Galois Theory Solvability

Galois Theory provides a profound connection between field theory and group theory, particularly in determining the solvability of polynomial equations. The concept of solvability in this context refers to the ability to express the roots of a polynomial equation using radicals (i.e., operations involving addition, subtraction, multiplication, division, and taking roots). A polynomial f(x)f(x)f(x) of degree nnn is said to be solvable by radicals if its Galois group GGG, which describes symmetries of the roots, is a solvable group.

In more technical terms, if GGG has a subnormal series where each factor is an abelian group, then the polynomial is solvable by radicals. For instance, while cubic and quartic equations can always be solved by radicals, the general quintic polynomial (degree 5) is not solvable by radicals due to the structure of its Galois group, as proven by the Abel-Ruffini theorem. Thus, Galois Theory not only classifies polynomial equations based on their solvability but also enriches our understanding of the underlying algebraic structures.

Thermal Barrier Coatings

Thermal Barrier Coatings (TBCs) are advanced materials engineered to protect components from extreme temperatures and thermal fatigue, particularly in high-performance applications like gas turbines and aerospace engines. These coatings are typically composed of a ceramic material, such as zirconia, which exhibits low thermal conductivity, thereby insulating the underlying metal substrate from heat. The effectiveness of TBCs can be quantified by their thermal conductivity, often expressed in units of W/m·K, which should be significantly lower than that of the base material.

TBCs not only enhance the durability and performance of components by minimizing thermal stress but also contribute to improved fuel efficiency and reduced emissions in engines. The application process usually involves techniques like plasma spraying or electron beam physical vapor deposition (EB-PVD), which create a porous structure that can withstand thermal cycling and mechanical stresses. Overall, TBCs are crucial for extending the operational life of high-temperature components in various industries.

Fermi-Dirac

The Fermi-Dirac statistics describe the distribution of particles that obey the Pauli exclusion principle, particularly in fermions, which include particles like electrons, protons, and neutrons. In contrast to classical particles, which can occupy the same state, fermions cannot occupy the same quantum state simultaneously. The distribution function is given by:

f(E)=1e(E−μ)/(kT)+1f(E) = \frac{1}{e^{(E - \mu)/(kT)} + 1}f(E)=e(E−μ)/(kT)+11​

where EEE is the energy of the state, μ\muμ is the chemical potential, kkk is the Boltzmann constant, and TTT is the absolute temperature. This function indicates that at absolute zero, all energy states below the Fermi energy are filled, while those above are empty. As temperature increases, particles can occupy higher energy states, leading to phenomena such as electrical conductivity in metals and the behavior of electrons in semiconductors. The Fermi-Dirac distribution is crucial in various fields, including solid-state physics and quantum mechanics, as it helps explain the behavior of electrons in atoms and solids.