StudentsEducators

Harberger Triangle

The Harberger Triangle is a concept in public economics that illustrates the economic inefficiencies resulting from taxation, particularly on capital. It is named after the economist Arnold Harberger, who highlighted the idea that taxes create a deadweight loss in the market. This triangle visually represents the loss in economic welfare due to the distortion of supply and demand caused by taxation.

When a tax is imposed, the quantity traded in the market decreases from Q0Q_0Q0​ to Q1Q_1Q1​, resulting in a loss of consumer and producer surplus. The area of the Harberger Triangle can be defined as the area between the demand and supply curves that is lost due to the reduction in trade. Mathematically, if PdP_dPd​ is the price consumers are willing to pay and PsP_sPs​ is the price producers are willing to accept, the loss can be represented as:

Deadweight Loss=12×(Q0−Q1)×(Ps−Pd)\text{Deadweight Loss} = \frac{1}{2} \times (Q_0 - Q_1) \times (P_s - P_d)Deadweight Loss=21​×(Q0​−Q1​)×(Ps​−Pd​)

In essence, the Harberger Triangle serves to illustrate how taxes can lead to inefficiencies in markets, reducing overall economic welfare.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Shapley Value

The Shapley Value is a solution concept in cooperative game theory that assigns a unique distribution of a total surplus generated by a coalition of players. It is based on the idea of fairly allocating the gains from cooperation among all participants, taking into account their individual contributions to the overall outcome. The Shapley Value is calculated by considering all possible permutations of players and determining the marginal contribution of each player as they join the coalition. Formally, for a player iii, the Shapley Value ϕi\phi_iϕi​ can be expressed as:

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

where NNN is the set of all players, SSS is a subset of players not including iii, and v(S)v(S)v(S) represents the value generated by the coalition SSS. The Shapley Value ensures that players who contribute more to the success of the coalition receive a larger share of the total payoff, promoting fairness and incentivizing cooperation among participants.

Martingale Property

The Martingale Property is a fundamental concept in probability theory and stochastic processes, particularly in the study of financial markets and gambling. A sequence of random variables (Xn)n≥0(X_n)_{n \geq 0}(Xn​)n≥0​ is said to be a martingale with respect to a filtration (Fn)n≥0(\mathcal{F}_n)_{n \geq 0}(Fn​)n≥0​ if it satisfies the following conditions:

  1. Integrability: Each XnX_nXn​ must be integrable, meaning that the expected value E[∣Xn∣]<∞E[|X_n|] < \inftyE[∣Xn​∣]<∞.
  2. Adaptedness: Each XnX_nXn​ is Fn\mathcal{F}_nFn​-measurable, implying that the value of XnX_nXn​ can be determined by the information available up to time nnn.
  3. Martingale Condition: The expected value of the next observation, given all previous observations, equals the most recent observation, formally expressed as:
E[Xn+1∣Fn]=Xn E[X_{n+1} | \mathcal{F}_n] = X_nE[Xn+1​∣Fn​]=Xn​

This property indicates that, under the martingale framework, the future expected value of the process is equal to the present value, suggesting a fair game where there is no "predictable" trend over time.

Kolmogorov Spectrum

The Kolmogorov Spectrum relates to the statistical properties of turbulence in fluid dynamics, primarily describing how energy is distributed across different scales of motion. According to the Kolmogorov theory, the energy spectrum E(k)E(k)E(k) of turbulent flows scales with the wave number kkk as follows:

E(k)∼k−5/3E(k) \sim k^{-5/3}E(k)∼k−5/3

This relationship indicates that larger scales (or lower wave numbers) contain more energy than smaller scales, which is a fundamental characteristic of homogeneous and isotropic turbulence. The spectrum emerges from the idea that energy is transferred from larger eddies to smaller ones until it dissipates as heat, particularly at the smallest scales where viscosity becomes significant. The Kolmogorov Spectrum is crucial in various applications, including meteorology, oceanography, and engineering, as it helps in understanding and predicting the behavior of turbulent flows.

Ipo Pricing

IPO Pricing, or Initial Public Offering Pricing, refers to the process of determining the initial price at which a company's shares will be offered to the public during its initial public offering. This price is critical as it sets the stage for how the stock will perform in the market after it begins trading. The pricing is typically influenced by several factors, including:

  • Company Valuation: The underwriters assess the company's financial health, market position, and growth potential.
  • Market Conditions: Current economic conditions and investor sentiment can significantly affect pricing.
  • Comparable Companies: Analysts often look at the pricing of similar companies in the same industry to gauge an appropriate price range.

Ultimately, the goal of IPO pricing is to strike a balance between raising sufficient capital for the company while ensuring that the shares are attractive to investors, thus ensuring a successful market debut.

Stirling Engine

The Stirling engine is a type of heat engine that operates by cyclic compression and expansion of air or another gas at different temperature levels. Unlike internal combustion engines, it does not rely on the combustion of fuel within the engine itself; instead, it uses an external heat source to heat the gas, which then expands and drives a piston. This process can be summarized in four main steps:

  1. Heating: The gas is heated externally, causing it to expand.
  2. Expansion: As the gas expands, it pushes the piston, converting thermal energy into mechanical work.
  3. Cooling: The gas is then moved to a cooler area, where it loses heat and contracts.
  4. Compression: The piston compresses the cooled gas, preparing it for another cycle.

The efficiency of a Stirling engine can be quite high, especially when operating between significant temperature differences, and it is often praised for its quiet operation and versatility in using various heat sources, including solar energy and waste heat.

Nyquist Frequency Aliasing

Nyquist Frequency Aliasing occurs when a signal is sampled below its Nyquist rate, which is defined as twice the highest frequency present in the signal. When this happens, higher frequency components of the signal can be indistinguishable from lower frequency components during the sampling process, leading to a phenomenon known as aliasing. For instance, if a signal contains frequencies above half the sampling rate, these frequencies are reflected back into the lower frequency range, causing distortion and loss of information.

To prevent aliasing, it is crucial to sample a signal at a rate greater than twice its maximum frequency, as stated by the Nyquist theorem. The mathematical representation for the Nyquist rate can be expressed as:

fs>2fmaxf_s > 2 f_{max}fs​>2fmax​

where fsf_sfs​ is the sampling frequency and fmaxf_{max}fmax​ is the maximum frequency of the signal. Understanding and applying the Nyquist criterion is essential in fields like digital signal processing, telecommunications, and audio engineering to ensure accurate representation of the original signal.