StudentsEducators

Planck Constant

The Planck constant, denoted as hhh, is a fundamental physical constant that plays a crucial role in quantum mechanics. It relates the energy of a photon to its frequency through the equation E=hνE = h \nuE=hν, where EEE is the energy, ν\nuν is the frequency, and hhh has a value of approximately 6.626×10−34 Js6.626 \times 10^{-34} \, \text{Js}6.626×10−34Js. This constant signifies the granularity of energy levels in quantum systems, meaning that energy is not continuous but comes in discrete packets called quanta. The Planck constant is essential for understanding phenomena such as the photoelectric effect and the quantization of energy levels in atoms. Additionally, it sets the scale for quantum effects, indicating that at very small scales, classical physics no longer applies, and quantum mechanics takes over.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Dynamic Ram Architecture

Dynamic Random Access Memory (DRAM) architecture is a type of memory design that allows for high-density storage of information. Unlike Static RAM (SRAM), DRAM stores each bit of data in a capacitor within an integrated circuit, which makes it more compact and cost-effective. However, the charge in these capacitors tends to leak over time, necessitating periodic refresh cycles to maintain data integrity.

The architecture is structured in a grid format, typically organized into rows and columns, which allows for efficient access to stored data through a process called row access and column access. This method is often represented mathematically as:

Access Time=Row Access Time+Column Access Time\text{Access Time} = \text{Row Access Time} + \text{Column Access Time}Access Time=Row Access Time+Column Access Time

In summary, DRAM architecture is characterized by its high capacity, lower cost, and the need for refresh cycles, making it suitable for applications in computers and other devices requiring large amounts of volatile memory.

Fourier-Bessel Series

The Fourier-Bessel Series is a mathematical tool used to represent functions defined in a circular domain, typically a disk or a cylinder. This series expands a function in terms of Bessel functions, which are solutions to Bessel's differential equation. The general form of the Fourier-Bessel series for a function f(r,θ)f(r, \theta)f(r,θ), defined in a circular domain, is given by:

f(r,θ)=∑n=0∞AnJn(knr)cos⁡(nθ)+BnJn(knr)sin⁡(nθ)f(r, \theta) = \sum_{n=0}^{\infty} A_n J_n(k_n r) \cos(n \theta) + B_n J_n(k_n r) \sin(n \theta)f(r,θ)=n=0∑∞​An​Jn​(kn​r)cos(nθ)+Bn​Jn​(kn​r)sin(nθ)

where JnJ_nJn​ are the Bessel functions of the first kind, knk_nkn​ are the roots of the Bessel functions, and AnA_nAn​ and BnB_nBn​ are the Fourier coefficients determined by the function. This series is particularly useful in problems of heat conduction, wave propagation, and other physical phenomena where cylindrical or spherical symmetry is present, allowing for the effective analysis of boundary value problems. Moreover, it connects concepts from Fourier analysis and special functions, facilitating the solution of complex differential equations in engineering and physics.

Topological Insulator Materials

Topological insulators are a class of materials that exhibit unique electronic properties due to their topological order. These materials are characterized by an insulating bulk but conductive surface states, which arise from the spin-orbit coupling and the band structure of the material. One of the most fascinating aspects of topological insulators is their ability to host surface states that are protected against scattering by non-magnetic impurities, making them robust against defects. This property is a result of time-reversal symmetry and can be described mathematically through the use of topological invariants, such as the Z2\mathbb{Z}_2Z2​ invariants, which classify the topological phase of the material. Applications of topological insulators include spintronics, quantum computing, and advanced materials for electronic devices, as they promise to enable new functionalities due to their unique electronic states.

Brillouin Light Scattering

Brillouin Light Scattering (BLS) is a powerful technique used to investigate the mechanical properties and dynamics of materials at the microscopic level. It involves the interaction of coherent light, typically from a laser, with acoustic waves (phonons) in a medium. As the light scatters off these phonons, it experiences a shift in frequency, known as the Brillouin shift, which is directly related to the material's elastic properties and sound velocity. This phenomenon can be described mathematically by the relation:

Δf=2nλvs\Delta f = \frac{2n}{\lambda}v_sΔf=λ2n​vs​

where Δf\Delta fΔf is the frequency shift, nnn is the refractive index, λ\lambdaλ is the wavelength of the laser light, and vsv_svs​ is the speed of sound in the material. BLS is utilized in various fields, including material science, biophysics, and telecommunications, making it an essential tool for both research and industrial applications. The non-destructive nature of the technique allows for the study of various materials without altering their properties.

Arrow’S Learning By Doing

Arrow's Learning By Doing is a concept introduced by economist Kenneth Arrow, emphasizing the importance of experience in the learning process. The idea suggests that as individuals or firms engage in production or tasks, they accumulate knowledge and skills over time, leading to increased efficiency and productivity. This learning occurs through trial and error, where the mistakes made initially provide valuable feedback that refines future actions.

Mathematically, this can be represented as a positive correlation between the cumulative output QQQ and the level of expertise EEE, where EEE increases with each unit produced:

E=f(Q)E = f(Q)E=f(Q)

where fff is a function representing learning. Furthermore, Arrow posited that this phenomenon not only applies to individuals but also has broader implications for economic growth, as the collective learning in industries can lead to technological advancements and improved production methods.

Superelastic Behavior

Superelastic behavior refers to a unique mechanical property exhibited by certain materials, particularly shape memory alloys (SMAs), such as nickel-titanium (NiTi). This phenomenon occurs when the material can undergo large strains without permanent deformation, returning to its original shape upon unloading. The underlying mechanism involves the reversible phase transformation between austenite and martensite, which allows the material to accommodate significant changes in shape under stress.

This behavior can be summarized in the following points:

  • Energy Absorption: Superelastic materials can absorb and release energy efficiently, making them ideal for applications in seismic protection and medical devices.
  • Temperature Independence: Unlike conventional shape memory behavior that relies on temperature changes, superelasticity is primarily stress-induced, allowing for functionality across a range of temperatures.
  • Hysteresis Loop: The stress-strain curve for superelastic materials typically exhibits a hysteresis loop, representing the energy lost during loading and unloading cycles.

Mathematically, the superelastic behavior can be represented by the relation between stress (σ\sigmaσ) and strain (ϵ\epsilonϵ), showcasing a nonlinear elastic response during the phase transformation process.