StudentsEducators

Poisson Summation Formula

The Poisson Summation Formula is a powerful tool in analysis and number theory that relates the sums of a function evaluated at integer points to the sums of its Fourier transform evaluated at integer points. Specifically, if f(x)f(x)f(x) is a function that decays sufficiently fast, the formula states:

∑n=−∞∞f(n)=∑m=−∞∞f^(m)\sum_{n=-\infty}^{\infty} f(n) = \sum_{m=-\infty}^{\infty} \hat{f}(m)n=−∞∑∞​f(n)=m=−∞∑∞​f^​(m)

where f^(m)\hat{f}(m)f^​(m) is the Fourier transform of f(x)f(x)f(x), defined as:

f^(m)=∫−∞∞f(x)e−2πimx dx.\hat{f}(m) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i mx} \, dx.f^​(m)=∫−∞∞​f(x)e−2πimxdx.

This relationship highlights the duality between the spatial domain and the frequency domain, allowing one to analyze problems in various fields, such as signal processing, by transforming them into simpler forms. The formula is particularly useful in applications involving periodic functions and can also be extended to distributions, making it applicable to a wider range of mathematical contexts.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Edmonds-Karp Algorithm

The Edmonds-Karp algorithm is an efficient implementation of the Ford-Fulkerson method for computing the maximum flow in a flow network. It uses Breadth-First Search (BFS) to find the shortest augmenting paths in terms of the number of edges, ensuring that the algorithm runs in polynomial time. The key steps involve repeatedly searching for paths from the source to the sink, augmenting flow along these paths, and updating the capacities of the edges until no more augmenting paths can be found. The running time of the algorithm is O(VE2)O(VE^2)O(VE2), where VVV is the number of vertices and EEE is the number of edges in the network. This makes the Edmonds-Karp algorithm particularly effective for dense graphs, where the number of edges is large compared to the number of vertices.

Taylor Expansion

The Taylor expansion is a mathematical concept that allows us to approximate a function using polynomials. Specifically, it expresses a function f(x)f(x)f(x) as an infinite sum of terms calculated from the values of its derivatives at a single point, typically taken to be aaa. The formula for the Taylor series is given by:

f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+…f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \ldotsf(x)=f(a)+f′(a)(x−a)+2!f′′(a)​(x−a)2+3!f′′′(a)​(x−a)3+…

This series converges to the function f(x)f(x)f(x) if the function is infinitely differentiable at the point aaa and within a certain interval around aaa. The Taylor expansion is particularly useful in calculus and numerical analysis for approximating functions that are difficult to compute directly. Through this expansion, we can derive valuable insights into the behavior of functions near the point of expansion, making it a powerful tool in both theoretical and applied mathematics.

Lie Algebra Commutators

In the context of Lie algebras, the commutator is a fundamental operation that captures the algebraic structure of the algebra. For two elements xxx and yyy in a Lie algebra g\mathfrak{g}g, the commutator is defined as:

[x,y]=xy−yx[x, y] = xy - yx[x,y]=xy−yx

This operation is bilinear, antisymmetric (i.e., [x,y]=−[y,x][x, y] = -[y, x][x,y]=−[y,x]), and satisfies the Jacobi identity:

[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0

The commutator provides a way to express how elements of the Lie algebra "commute," or fail to commute, and it plays a crucial role in the study of symmetries and conservation laws in physics, particularly in the framework of quantum mechanics and gauge theories. Understanding commutators helps in exploring the representation theory of Lie algebras and their applications in various fields, including geometry and particle physics.

Hysteresis Control

Hysteresis Control is a technique used in control systems to improve stability and reduce oscillations by introducing a defined threshold for switching states. This method is particularly effective in systems where small fluctuations around a setpoint can lead to frequent switching, which can cause wear and tear on mechanical components or lead to inefficiencies. By implementing hysteresis, the system only changes its state when the variable exceeds a certain upper threshold or falls below a lower threshold, thus creating a deadband around the setpoint.

For instance, if a thermostat is set to maintain a temperature of 20°C, it might only turn on the heating when the temperature drops to 19°C and turn it off again once it reaches 21°C. This approach not only minimizes unnecessary cycling but also enhances the responsiveness of the system. The general principle can be mathematically described as:

If T<Tlow→Turn ON\text{If } T < T_{\text{low}} \rightarrow \text{Turn ON}If T<Tlow​→Turn ON If T>Thigh→Turn OFF\text{If } T > T_{\text{high}} \rightarrow \text{Turn OFF}If T>Thigh​→Turn OFF

where TlowT_{\text{low}}Tlow​ and ThighT_{\text{high}}Thigh​ define the hysteresis bands around the desired setpoint.

Anisotropic Etching

Anisotropic etching is a specialized technique used in semiconductor manufacturing and microfabrication that selectively removes material from a substrate in a specific direction. This process is crucial for creating well-defined features with high aspect ratios, which means deep structures in relation to their width. Unlike isotropic etching, where material is removed uniformly in all directions, anisotropic etching allows for greater control and precision, resulting in vertical sidewalls and sharp corners.

This technique can be achieved using various methods, including wet etching with specific chemicals or dry etching techniques such as Reactive Ion Etching (RIE). The choice of method affects the etching profile and the materials that can be effectively used. Anisotropic etching is widely employed in the fabrication of microelectronic devices, MEMS (Micro-Electro-Mechanical Systems), and nanostructures, making it a vital process in modern technology.

Patricia Trie

A Patricia Trie, also known as a Practical Algorithm to Retrieve Information Coded in Alphanumeric, is a type of data structure that is particularly efficient for storing a dynamic set of strings, typically used in applications like text search engines and autocomplete systems. It is a compressed version of a standard trie, where common prefixes are shared among the strings to save space.

In a Patricia Trie, each node represents a common prefix of the strings, and each edge represents a bit or character in the string. The structure allows for fast lookup, insertion, and deletion operations, which can be done in O(k)O(k)O(k) time, where kkk is the length of the string being processed.

Key benefits of using Patricia Tries include:

  • Space Efficiency: Reduces memory usage by merging nodes with common prefixes.
  • Fast Operations: Facilitates quick retrieval and modification of strings.
  • Dynamic Updates: Supports dynamic string operations without significant overhead.

Overall, the Patricia Trie is an effective choice for applications requiring efficient string manipulation and retrieval.