Die Elastizität der Nachfrage ist ein Maß dafür, wie sensibel die nachgefragte Menge eines Gutes auf Änderungen des Preises reagiert. Sie wird berechnet als das Verhältnis der prozentualen Änderung der nachgefragten Menge zur prozentualen Änderung des Preises. Mathematisch wird dies durch die Formel ausgedrückt:
Ein Wert von zeigt an, dass die Nachfrage elastisch ist, was bedeutet, dass eine Preisänderung zu einer überproportionalen Änderung der nachgefragten Menge führt. Umgekehrt bedeutet , dass die Nachfrage unelastisch ist; eine Preisänderung hat nur geringe Auswirkungen auf die nachgefragte Menge. Faktoren wie Verfügbarkeit von Substitute, Notwendigkeit des Gutes und den Anteil des Einkommens, das für das Gut ausgegeben wird, beeinflussen die Elastizität der Nachfrage erheblich.
Anisotropes ätzen ist ein entscheidender Prozess in der Mikroelektromechanik (MEMS), der es ermöglicht, präzise und definierte Strukturen in dünnen Schichten von Materialien zu erstellen. Im Gegensatz zum isotropen Ätzen, bei dem das Material gleichmäßig in alle Richtungen abgetragen wird, erfolgt beim anisotropen Ätzen die Materialentfernung bevorzugt in bestimmte Richtungen. Dies wird oft durch die Verwendung von chemischen Ätzmitteln erreicht, die auf die Kristallstruktur des Materials abgestimmt sind.
Die Vorteile des anisotropen Ätzens sind unter anderem:
Diese Eigenschaften machen anisotropes Ätzen zu einem unverzichtbaren Verfahren in der MEMS-Fertigung, insbesondere für Anwendungen in Bereichen wie Sensoren, Aktuatoren und Mikrofluidik.
Huffman-Codierung ist ein Algorithmus zur verlustfreien Datenkompression, der häufig in der Informatik und der Telekommunikation verwendet wird. Der Algorithmus arbeitet, indem er eine binäre Baumstruktur erstellt, in der häufigere Zeichen kürzere Codes erhalten, während seltenere Zeichen längere Codes erhalten. Der Prozess beginnt mit der Berechnung der Häufigkeit jedes Zeichens in den zu komprimierenden Daten und dem Erstellen einer Prioritätswarteschlange, die diese Zeichen basierend auf ihrer Häufigkeit sortiert. Danach wird der Baum aufgebaut, indem die zwei am wenigsten häufigen Knoten wiederholt kombiniert werden, bis nur noch ein Knoten übrig bleibt, der die Wurzel des Baumes darstellt.
Die resultierenden Codes werden durch das Traversieren des Baumes generiert, wobei das Bewegen nach links einen „0“-Code und das Bewegen nach rechts einen „1“-Code darstellt. Diese Methode führt zu einer effizienten Codierung, die die Gesamtgröße der Daten reduziert und somit Speicherplatz spart.
Die Bessel-Funktion ist eine spezielle Funktion, die in vielen Bereichen der Mathematik und Physik vorkommt, insbesondere in der Lösung von Differentialgleichungen, die zylindrische Symmetrie aufweisen. Es gibt verschiedene Typen von Bessel-Funktionen, wobei die am häufigsten verwendeten die Bessel-Funktionen erster Art und zweiter Art sind. Diese Funktionen erscheinen häufig in Problemen der Wellenmechanik, Wärmeleitung und Elektromagnetismus, wo sie die Form von Wellen in zylindrischen Koordinaten beschreiben.
Die Bessel-Funktion erster Art ist definiert durch die folgende Reihenentwicklung:
Hierbei ist die Gamma-Funktion. Bessel-Funktionen sind nützlich, da sie die Eigenschaften von Oszillationen und Wellen in nicht-euklidischen Geometrien modellieren können, was sie zu einem wichtigen Werkzeug in der theoretischen Physik und Ingenieurwissenschaft macht.
Samuelson’s Multiplier-Accelerator ist ein wirtschaftliches Modell, das die Wechselwirkungen zwischen Investitionen und Konsum in einer Volkswirtschaft beschreibt. Der Multiplikator bezieht sich auf den Effekt, den eine anfängliche Veränderung der Ausgaben auf das Gesamteinkommen hat. Wenn beispielsweise die Regierung die Ausgaben erhöht, steigt das Einkommen der Haushalte, was zu einem Anstieg des Konsums führt. Dieser Anstieg des Konsums hat wiederum Auswirkungen auf die Nachfrage nach Gütern, was die Unternehmen veranlasst, mehr zu investieren.
Der Beschleuniger hingegen beschreibt, wie die Investitionen der Unternehmen in Reaktion auf Veränderungen der Nachfrage angepasst werden. Eine steigende Nachfrage führt zu einer höheren Investitionsrate, was die Wirtschaft weiter ankurbeln kann. Mathematisch wird der Effekt durch die Gleichung dargestellt, wobei das Gesamteinkommen, der Multiplikator und die Veränderung der Staatsausgaben ist. In Kombination zeigen der Multiplikator und der Beschleuniger, wie Veränderungen in einem Bereich der Wirtschaft weitreichende Auswirkungen auf andere Bereiche haben können.
Reynolds Averaging ist ein Verfahren zur Analyse turbulenter Strömungen, das von Osbourne Reynolds eingeführt wurde. Es basiert auf der Idee, dass turbulente Strömungen aus einem zeitlich gemittelten Teil und einem schwankenden Teil bestehen. Mathematisch wird dies durch die Zerlegung der Strömungsgrößen, wie Geschwindigkeit , in einen Mittelwert und eine Fluktuation dargestellt, sodass gilt:
Durch diese Zerlegung können die komplexen und chaotischen Eigenschaften turbulenter Strömungen in einfacher zu behandelnde Durchschnittswerte umgewandelt werden. Reynolds Averaging führt zur sogenannten Reynolds-gleichgewichtsgleichung, die zusätzliche Terme, sogenannte Reynolds-Stress-Terme, einführt, um die Wechselwirkungen zwischen den Fluktuationen zu berücksichtigen. Diese Methode ist besonders nützlich in der Strömungsmechanik und der Aerodynamik, da sie die Berechnung von Strömungsfeldern in komplexen Geometrien und unter verschiedenen Randbedingungen erleichtert.
Ein Mode-Locking Laser ist ein spezieller Lasertyp, der in der Lage ist, ultrakurze Lichtimpulse zu erzeugen. Durch die gezielte Kopplung der verschiedenen Moden innerhalb des Lasers wird eine kohärente Erzeugung von Lichtpulsen ermöglicht, die typischerweise im Bereich von Femtosekunden (1 Femtosekunde = Sekunden) liegt. Dies geschieht durch die Interferenz der verschiedenen Frequenzen, die im Laserresonator gebildet werden, wobei die Pulsbreite durch die Betriebsbedingungen und die Konstruktion des Lasers beeinflusst wird.
Die Technik des Mode-Lockings kann in zwei Hauptkategorien unterteilt werden: passives und aktives Mode-Locking. Beim passiven Mode-Locking wird ein nichtlinearer optischer Effekt in einem Medium verwendet, um die Moden zu synchronisieren, während beim aktiven Mode-Locking externe modulierte Signale zur Steuerung der Pulsbildung eingesetzt werden. Diese Laser finden Anwendung in verschiedenen Bereichen, einschließlich der Materialbearbeitung, medizinischen Diagnostik und telekommunikationstechnologien, wo präzise und schnelle Lichtpulse erforderlich sind.