Density Functional Theory

Die Density Functional Theory (DFT) ist eine theoretische Methode in der Quantenmechanik, die zur Berechnung der elektronischen Struktur von vielen Körpern verwendet wird. Sie basiert auf der Idee, dass die gesamte Energie eines Systems durch die Elektronendichte ρ(r)\rho(\mathbf{r}) beschrieben werden kann, anstatt durch die Wellenfunktionen der einzelnen Elektronen. DFT reduziert somit die Komplexität des Problems erheblich, da sie die Wechselwirkungen zwischen Elektronen durch effektive Funktionale behandelt. Die grundlegende Gleichung in DFT ist das Hohenberg-Kohn-Theorem, das besagt, dass es eine eindeutige Beziehung zwischen der Elektronendichte und der Energie gibt.

Die DFT ist besonders nützlich in der Chemie und Materialwissenschaft, da sie eine gute Balance zwischen Genauigkeit und Rechenaufwand bietet. Sie wird häufig verwendet, um Eigenschaften von Molekülen und Festkörpern zu untersuchen, wie z.B. Bindungsenergien, Reaktionsprofile und elektronische Eigenschaften.

Weitere verwandte Begriffe

Hyperbolische Diskontierung

Hyperbolic Discounting ist ein psychologisches Konzept, das beschreibt, wie Menschen zukünftige Belohnungen bewerten und wie sich diese Bewertung über die Zeit verändert. Im Gegensatz zur exponentiellen Diskontierung, bei der zukünftige Belohnungen konstant abnehmen, zeigt die hyperbolische Diskontierung, dass die Abwertung zukünftiger Belohnungen zunächst stark ist, aber mit zunehmendem Abstand zur Gegenwart langsamer wird. Dies führt oft zu irrationalem Verhalten, da kurzfristige Belohnungen überbewertet und langfristige Belohnungen unterbewertet werden.

Mathematisch kann die hyperbolische Diskontierungsfunktion wie folgt dargestellt werden:

V(t)=V01+ktV(t) = \frac{V_0}{1 + kt}

Hierbei ist V(t)V(t) der Wert einer zukünftigen Belohnung, V0V_0 der Wert der sofortigen Belohnung, kk eine Konstante, die die Diskontierungsrate beschreibt, und tt die Zeit bis zur Belohnung. Diese Diskontierung kann zu Problemen in der Entscheidungsfindung führen, insbesondere in Bereichen wie Konsumverhalten, Gesundheit und Finanzen, wo langfristige Planung erforderlich ist.

Geldpolitik

Die Geldpolitik ist ein zentrales Instrument der Wirtschafts- und Finanzpolitik, das von Zentralbanken eingesetzt wird, um die wirtschaftliche Stabilität zu gewährleisten. Sie umfasst Maßnahmen zur Regulierung der Geldmenge und der Zinsen, um Inflation zu kontrollieren, das Wirtschaftswachstum zu fördern und die Beschäftigung zu stabilisieren. Die Geldpolitik kann in zwei Hauptkategorien unterteilt werden: die expansive Geldpolitik, die darauf abzielt, die Wirtschaft durch Senkung der Zinssätze und Erhöhung der Geldmenge anzukurbeln, und die restriktive Geldpolitik, die darauf abzielt, die Inflation zu bekämpfen, indem die Geldmenge verringert und die Zinssätze erhöht werden.

Die Wirksamkeit der Geldpolitik wird oft durch das Konzept der Zinselastizität des Geldangebots und der Geldnachfrage bestimmt. Ein zentrales Ziel der Geldpolitik ist es, die Preisniveaustabilität zu erreichen, was bedeutet, dass die Inflation auf einem stabilen und vorhersehbaren Niveau gehalten wird, typischerweise um die 2% pro Jahr.

Tschebyscheff-Knoten

Chebyshev Nodes sind spezielle Punkte, die häufig in der numerischen Mathematik, insbesondere bei der Interpolation und Approximation von Funktionen, verwendet werden. Sie sind definiert als die Nullstellen der Chebyshev-Polynome, einer speziellen Familie orthogonaler Polynome. Diese Punkte sind in dem Intervall [1,1][-1, 1] gleichmäßig verteilt, wobei die Verteilung dichter an den Enden des Intervalls ist. Mathematisch werden die Chebyshev Nodes für nn Punkte wie folgt berechnet:

xk=cos((2k+1)π2n)fu¨k=0,1,,n1x_k = \cos\left(\frac{(2k + 1)\pi}{2n}\right) \quad \text{für } k = 0, 1, \ldots, n-1

Die Verwendung von Chebyshev Nodes minimiert das Problem der Runge-Phänomen, das bei der gleichmäßigen Verteilung von Punkten auftreten kann, und führt zu besseren Approximationen von Funktionen. Sie sind besonders nützlich in der polynomialen Interpolation, da sie die Interpolationsfehler signifikant reduzieren.

Kapitalvertiefung

Capital Deepening bezeichnet den Prozess, bei dem die Menge an Kapital pro Arbeitskraft in einer Volkswirtschaft erhöht wird. Dies geschieht typischerweise durch Investitionen in Maschinen, Technologien und Infrastruktur, die die Produktivität der Arbeitskräfte steigern. Wenn Unternehmen beispielsweise neue, effizientere Maschinen anschaffen, können die Beschäftigten mehr produzieren, was die gesamtwirtschaftliche Produktivität verbessert.

Ein zentrales Prinzip des Capital Deepening ist, dass es nicht nur um die Gesamtheit des Kapitals geht, sondern um die Qualität und die Effizienz der eingesetzten Ressourcen. Dies kann in mathematischer Form als eine Erhöhung des Kapitalintensitätsverhältnisses KL\frac{K}{L} (Kapital pro Arbeitskraft, wobei KK das Kapital und LL die Anzahl der Arbeitskräfte darstellt) beschrieben werden. Ein Anstieg dieses Verhältnisses führt in der Regel zu einem Anstieg des realen BIP pro Kopf und trägt somit zur wirtschaftlichen Entwicklung bei.

Mach-Zahl

Die Mach-Zahl ist eine dimensionslose Größe, die das Verhältnis der Geschwindigkeit eines Objekts zur Schallgeschwindigkeit in dem Medium beschreibt, durch das es sich bewegt. Sie wird häufig in der Aerodynamik verwendet, um den Zustand eines Objekts zu klassifizieren, das sich durch Luft oder andere Gase bewegt. Die Mach-Zahl MM wird definiert als:

M=vcM = \frac{v}{c}

wobei vv die Geschwindigkeit des Objekts und cc die Schallgeschwindigkeit im jeweiligen Medium ist. Eine Mach-Zahl von M<1M < 1 bezeichnet subsonische Geschwindigkeiten, während M=1M = 1 die Schallgeschwindigkeit darstellt. Geschwindigkeiten über M=1M = 1 sind als supersonisch bekannt, und bei M>5M > 5 spricht man von hypersonischen Geschwindigkeiten. Die Mach-Zahl ist entscheidend für das Verständnis von Strömungsmechanik, insbesondere bei der Gestaltung von Flugzeugen und Raketen.

Verlustaversion in der Verhaltensökonomie

Loss Aversion ist ein zentrales Konzept der Behavioral Finance, das beschreibt, dass Menschen Verluste stärker empfinden als Gewinne von gleicher Größe. Diese Tendenz führt dazu, dass Individuen oft riskantere Entscheidungen vermeiden, um potenzielle Verluste zu verhindern, selbst wenn die Chancen auf Gewinne attraktiv sind. Psychologisch gesehen empfinden Menschen einen Verlust als etwa zweimal schmerzhaft wie einen gleichwertigen Gewinn Freude bereitet. Dies kann zu irrationalen Entscheidungen führen, wie z.B. das Festhalten an verlustbringenden Investitionen oder das Vermeiden von notwendigen Risiken. Beispielsweise könnte ein Investor, der mit einem Verlust von 500 Euro konfrontiert ist, zögern, eine Aktie zu verkaufen, die weiterhin an Wert verliert, nur um den Verlust nicht zu realisieren. In der Praxis zeigt sich die Verlustaversion auch in der Kauf- und Verkaufspsychologie, wo Anleger oft zu lange an verlustbringenden Positionen festhalten, während sie Gewinne schnell realisieren.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.