StudierendeLehrende

Dark Matter Candidates

Dunkle Materie ist ein mysteriöses Material, das etwa 27 % des Universums ausmacht und nicht direkt beobachtbar ist, da es keine elektromagnetische Strahlung emittiert. Um die Eigenschaften und die Natur der dunklen Materie zu verstehen, haben Wissenschaftler verschiedene Kandidaten vorgeschlagen, die diese Materie ausmachen könnten. Zu den prominentesten gehören:

  • WIMPs (Weakly Interacting Massive Particles): Diese hypothetischen Teilchen interagieren nur schwach mit normaler Materie und könnten in großen Mengen im Universum vorhanden sein.
  • Axionen: Sehr leichte Teilchen, die aus bestimmten physikalischen Theorien hervorgehen und in der Lage sein könnten, die Eigenschaften der Dunklen Materie zu erklären.
  • Sterile Neutrinos: Eine Form von Neutrinos, die nicht an den Standardwechselwirkungen teilnehmen, aber dennoch zur Gesamtmasse des Universums beitragen könnten.

Die Suche nach diesen Kandidaten erfolgt sowohl durch astronomische Beobachtungen als auch durch experimentelle Ansätze in Laboren, wo versucht wird, die dunkle Materie direkt nachzuweisen oder ihre Auswirkungen zu messen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Lagrange-Dichte

Die Lagrange-Dichte ist ein zentrales Konzept in der theoretischen Physik, insbesondere in der Feldtheorie und der Teilchenphysik. Sie beschreibt die dynamischen Eigenschaften eines physikalischen Systems und wird oft als Funktion der Felder und ihrer Ableitungen formuliert. Mathematisch wird die Lagrange-Dichte L\mathcal{L}L häufig als Funktion der Form L(ϕ,∂μϕ)\mathcal{L}(\phi, \partial_\mu \phi)L(ϕ,∂μ​ϕ) dargestellt, wobei ϕ\phiϕ ein Feld und ∂μϕ\partial_\mu \phi∂μ​ϕ die Ableitung des Feldes ist. Die Lagrange-Dichte wird verwendet, um die Lagrange-Gleichungen abzuleiten, die die Bewegungsgleichungen des Systems liefern. In der Quantenfeldtheorie ist die Lagrange-Dichte auch entscheidend für die Formulierung der Quanteneffekte und der Wechselwirkungen zwischen Teilchen. Sie spielt eine wichtige Rolle bei der Beschreibung der Symmetrien und Erhaltungssätze in physikalischen Systemen.

Sallen-Key-Filter

Der Sallen-Key Filter ist eine beliebte Topologie für aktive Filter, die häufig in der Signalverarbeitung eingesetzt wird. Er besteht aus einem Operationsverstärker und passiven Bauelementen wie Widerständen und Kondensatoren, um eine bestimmte Filtercharakteristik zu erzielen, typischerweise ein Tiefpass- oder Hochpassfilter. Die Konfiguration ermöglicht es, die Filterordnung zu erhöhen, ohne die Schaltungskomplexität signifikant zu steigern.

Ein typisches Merkmal des Sallen-Key Filters ist die Möglichkeit, die Eckfrequenz ωc\omega_cωc​ und die Dämpfung ζ\zetaζ durch die Auswahl der Bauteilwerte zu steuern. Die Übertragungsfunktion kann in der Form dargestellt werden:

H(s)=Ks2+ωcQs+ωc2H(s) = \frac{K}{s^2 + \frac{\omega_c}{Q}s + \omega_c^2}H(s)=s2+Qωc​​s+ωc2​K​

Hierbei ist KKK die Verstärkung, QQQ die Güte und sss die komplexe Frequenz. Diese Flexibilität macht den Sallen-Key Filter zu einer bevorzugten Wahl in vielen elektronischen Anwendungen, einschließlich Audio- und Kommunikationssystemen.

Denoising Score Matching

Denoising Score Matching ist eine Technik zur Schätzung von Verteilungen in unüberwachten Lernsettings, die auf der Idee basiert, dass das Modell lernen kann, wie man Rauschen von echten Daten unterscheidet. Der Hauptansatz besteht darin, ein Rauschmodell zu verwenden, um verrauschte Versionen der echten Daten zu erzeugen, und dann die Score-Funktion (den Gradienten der log-Wahrscheinlichkeit) dieser verrauschten Daten zu schätzen. Anstatt die wahre Datenverteilung direkt zu approximieren, wird das Modell darauf trainiert, die Score-Funktion der Daten zu maximieren, was zu einer robusteren Schätzung führt. Dies wird häufig mit Hilfe von Gradientenabstieg erreicht, um die Differenz zwischen der geschätzten und der tatsächlichen Score-Funktion zu minimieren. Denoising Score Matching hat sich in verschiedenen Anwendungen als effektiv erwiesen, einschließlich der Bildgenerierung und der Verarbeitung natürlicher Sprache.

Neurovaskuläre Kopplung

Neurovascular Coupling beschreibt den Prozess, durch den neuronale Aktivität die Blutversorgung im Gehirn reguliert. Wenn Neuronen aktiv sind, benötigen sie mehr Energie, was zu einem erhöhten Bedarf an Sauerstoff und Nährstoffen führt. Diese Nachfrage wird durch die Erweiterung der Blutgefäße in der Nähe der aktiven Neuronen gedeckt, was als vasodilatative Reaktion bezeichnet wird. Die Signalübertragung erfolgt über verschiedene Moleküle, darunter Stickstoffmonoxid (NO) und Prostaglandine, die von den Neuronen und Gliazellen freigesetzt werden. Dadurch wird sichergestellt, dass die Bereiche des Gehirns, die gerade aktiv sind, auch ausreichend mit Blut versorgt werden, was für die kognitive Funktion und die Aufrechterhaltung der Hirngesundheit von entscheidender Bedeutung ist.

Molekulare Dynamik Protein-Faltung

Molekulardynamik (MD) ist eine computergestützte Methode, die verwendet wird, um das Verhalten von Molekülen über die Zeit zu simulieren, indem die Wechselwirkungen zwischen Atomen berechnet werden. Bei der Protein-Faltung handelt es sich um den Prozess, durch den ein Protein seine funktionelle dreidimensionale Struktur annimmt, nachdem es als Kette von Aminosäuren synthetisiert wurde. In der MD-Simulation wird das Protein als ein System von Atomen betrachtet, und die Kräfte zwischen diesen Atomen werden durch physikalische Gesetze beschrieben, typischerweise mithilfe von Potentialfunktionen wie dem Lennard-Jones-Potential oder den Coulomb-Kräften.

Die Simulation ermöglicht es Wissenschaftlern, wichtige Aspekte der Faltung zu untersuchen, einschließlich der energetischen Stabilität verschiedener Konformationen und der Dynamik der Faltungswege. Durch die Analyse der resultierenden Trajektorien können Forscher Erkenntnisse gewinnen über die kinetischen Barrieren, die während des Faltungsprozesses überwunden werden müssen, sowie über die Einflüsse von Umgebungsbedingungen wie Temperatur und Druck auf die Faltungseffizienz.

Pseudorandomzahlengenerator-Entropie

Die Entropie eines Pseudorandom Number Generators (PRNG) beschreibt die Unvorhersehbarkeit und den Grad der Zufälligkeit der von ihm erzeugten Zahlen. Entropie ist ein Maß für die Unsicherheit in einem System, und je höher die Entropie eines PRNG ist, desto schwieriger ist es, die nächsten Ausgaben vorherzusagen. Ein PRNG, der aus einer deterministischen Quelle wie einem Algorithmus speist, benötigt jedoch eine initiale Zufallsquelle, um eine ausreichende Entropie zu gewährleisten. Diese Quelle kann beispielsweise durch physikalische Prozesse (z.B. thermisches Rauschen) oder durch Benutzerinteraktionen (wie Mausbewegungen) gewonnen werden.

Die mathematische Formalisierung der Entropie kann durch die Shannon-Entropie gegeben werden, die wie folgt definiert ist:

H(X)=−∑i=1np(xi)log⁡2p(xi)H(X) = - \sum_{i=1}^{n} p(x_i) \log_2 p(x_i)H(X)=−i=1∑n​p(xi​)log2​p(xi​)

wobei H(X)H(X)H(X) die Entropie des Zufallsprozesses XXX darstellt und p(xi)p(x_i)p(xi​) die Wahrscheinlichkeit des Auftretens des Ereignisses xix_ixi​ ist. Eine hohe Entropie ist entscheidend für sicherheitskritische Anwendungen wie Kryptografie, wo die Vorhersagbarkeit von Zufallszahlen zu erheblichen Sicherheitsrisiken führen