StudierendeLehrende

Fourier Series

Die Fourier-Reihe ist ein mathematisches Werkzeug, das verwendet wird, um periodische Funktionen als Summen von Sinus- und Kosinusfunktionen darzustellen. Diese Technik basiert auf der Idee, dass jede periodische Funktion durch die Überlagerung (Superposition) einfacher harmonischer Wellen beschrieben werden kann. Mathematisch wird eine Funktion f(x)f(x)f(x) über ein Intervall von −L-L−L bis LLL durch die Formel dargestellt:

f(x)=a0+∑n=1∞(ancos⁡(nπxL)+bnsin⁡(nπxL))f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n \pi x}{L}\right) + b_n \sin\left(\frac{n \pi x}{L}\right) \right)f(x)=a0​+n=1∑∞​(an​cos(Lnπx​)+bn​sin(Lnπx​))

Hierbei sind die Koeffizienten ana_nan​ und bnb_nbn​ die Fourier-Koeffizienten, die durch die Integrale

an=1L∫−LLf(x)cos⁡(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n \pi x}{L}\right) dxan​=L1​∫−LL​f(x)cos(Lnπx​)dx

und

bn=1L∫−LLf(x)sin⁡(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n \pi x}{L}\right) dxbn​=L1​∫−LL​f(x)sin(Lnπx​)dx

bestimmt werden. Fourier-Reihen finden Anwendung in

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dc-Dc Buck-Boost-Wandlung

Die Dc-Dc Buck-Boost Conversion ist ein Verfahren zur Spannungswandlung, das es ermöglicht, eine Eingangsspannung sowohl zu erhöhen (Boost) als auch zu verringern (Buck). Dieses Verfahren wird häufig in Anwendungen eingesetzt, bei denen die Ausgangsspannung sowohl unter als auch über der Eingangsspannung liegen kann. Der Buck-Boost-Wandler verwendet typischerweise einen Induktor, Schalter (z. B. Transistor), Diode und Kondensatoren, um die gewünschte Spannungsstufe zu erreichen.

Die Funktionsweise lässt sich durch folgende Gleichungen zusammenfassen:

  • Für den Buck-Modus:
Vout<VinundVout=D⋅VinV_{out} < V_{in} \quad \text{und} \quad V_{out} = D \cdot V_{in}Vout​<Vin​undVout​=D⋅Vin​
  • Für den Boost-Modus:
Vout>VinundVout=Vin1−DV_{out} > V_{in} \quad \text{und} \quad V_{out} = \frac{V_{in}}{1-D}Vout​>Vin​undVout​=1−DVin​​

Hierbei ist DDD das Tastverhältnis, das den Anteil der Zeit beschreibt, in dem der Schalter geschlossen ist. Durch die Anpassung dieses Verhältnisses kann die Ausgangsspannung präzise reguliert werden, was die Buck-Boost-Konverter flexibel und vielseitig macht, insbesondere in tragbaren Geräten und erneuerbaren Energieanwendungen.

Perowskit-Photovoltaik-Stabilität

Die Stabilität von Perowskit-Photovoltaikmodulen ist ein zentrales Forschungsthema, da diese Materialien vielversprechende Effizienzwerte bei der Umwandlung von Sonnenlicht in elektrische Energie bieten. Perowskite sind eine Klasse von Materialien mit einer speziellen kristallinen Struktur, die oft in der Form ABX3 vorkommen, wobei A und B Kationen und X Anionen sind. Eines der größten Herausforderungen ist jedoch die Umweltanfälligkeit dieser Materialien, die sie durch Faktoren wie Feuchtigkeit, Temperatur und Licht degradiert. Um die Stabilität zu erhöhen, werden verschiedene Strategien verfolgt, wie z.B. die Verwendung von stabileren chemischen Zusammensetzungen, das Hinzufügen von Schutzschichten oder die Optimierung der Herstellungsprozesse. Eine hohe Stabilität ist entscheidend, um die Lebensdauer der Module zu verlängern und ihre kommerzielle Anwendbarkeit zu gewährleisten. Derzeit wird intensiv geforscht, um die Stabilität von Perowskit-Solarzellen auf mehrere Jahre oder sogar Jahrzehnte zu verbessern.

Neurotransmitterdiffusion

Neurotransmitter Diffusion beschreibt den Prozess, durch den chemische Botenstoffe, die an Synapsen zwischen Nervenzellen freigesetzt werden, sich durch den synaptischen Spalt bewegen. Nachdem ein Aktionspotential die Freisetzung von Neurotransmittern wie Dopamin oder Serotonin aus dem präsynaptischen Neuron ausgelöst hat, diffundieren diese Moleküle in den synaptischen Spalt und binden an spezifische Rezeptoren auf der postsynaptischen Membran. Dieser Prozess ist entscheidend für die Signalübertragung im Nervensystem und beeinflusst zahlreiche physiologische Funktionen. Die Geschwindigkeit der Diffusion hängt von verschiedenen Faktoren ab, einschließlich der Konzentration der Neurotransmitter, der Temperatur und der Molekülgröße. Mathematisch kann die Diffusion durch das Fick'sche Gesetz beschrieben werden, das den Fluss von Teilchen in Bezug auf die Konzentrationsgradienten darstellt.

Einzelzell-RNA-Sequenzierungstechniken

Single-Cell RNA Sequencing (scRNA-seq) ist eine revolutionäre Technik, die es ermöglicht, die Genexpression auf der Ebene einzelner Zellen zu analysieren. Diese Methode bietet Einblicke in die molekularen Mechanismen von Zellpopulationen und deren heterogene Eigenschaften, die in herkömmlichen RNA-Sequenzierungstechniken verloren gehen. Der Prozess umfasst mehrere Schritte: Zunächst werden Zellen isoliert, oft durch Mikrofluidik oder Laser-Mikrodissektion. Anschließend wird die RNA in jeder Zelle amplifiziert und sequenziert, um die Transkriptome zu bestimmen. Die resultierenden Daten werden dann mit bioinformatischen Werkzeugen analysiert, um genetische Profile zu erstellen und Zelltypen zu identifizieren. Die Anwendung von scRNA-seq hat das Verständnis von Entwicklungsbiologie, Immunologie und Krebsforschung erheblich erweitert.

Dunkle Materie Kandidaten

Dunkle Materie ist ein mysteriöses Material, das etwa 27 % des Universums ausmacht und nicht direkt beobachtbar ist, da es keine elektromagnetische Strahlung emittiert. Um die Eigenschaften und die Natur der dunklen Materie zu verstehen, haben Wissenschaftler verschiedene Kandidaten vorgeschlagen, die diese Materie ausmachen könnten. Zu den prominentesten gehören:

  • WIMPs (Weakly Interacting Massive Particles): Diese hypothetischen Teilchen interagieren nur schwach mit normaler Materie und könnten in großen Mengen im Universum vorhanden sein.
  • Axionen: Sehr leichte Teilchen, die aus bestimmten physikalischen Theorien hervorgehen und in der Lage sein könnten, die Eigenschaften der Dunklen Materie zu erklären.
  • Sterile Neutrinos: Eine Form von Neutrinos, die nicht an den Standardwechselwirkungen teilnehmen, aber dennoch zur Gesamtmasse des Universums beitragen könnten.

Die Suche nach diesen Kandidaten erfolgt sowohl durch astronomische Beobachtungen als auch durch experimentelle Ansätze in Laboren, wo versucht wird, die dunkle Materie direkt nachzuweisen oder ihre Auswirkungen zu messen.

Poincaré-Vermutung-Beweis

Die Poincaré-Vermutung ist ein zentrales Ergebnis der Topologie, formuliert von Henri Poincaré im Jahr 1904. Sie besagt, dass jede kompakte, zusammenhängende, einfach zusammenhängende 3-dimensionale Mannigfaltigkeit homöomorph zur 3-dimensionalen Sphäre ist. Der Beweis dieser Vermutung wurde von dem russischen Mathematiker Grigori Perelman zwischen 2002 und 2003 erbracht, indem er die Methoden der Ricci-Fluss-Theorie anwandte. Perelmans Ansatz beinhaltete die Kurtz-Analyse von geometrischen Flusslinien, um die Struktur von 3-Mannigfaltigkeiten zu untersuchen und Singularitäten zu kontrollieren. Sein Beweis wurde von der mathematischen Gemeinschaft umfassend überprüft und als korrekt anerkannt, was zur Lösung eines der berühmtesten Probleme der Mathematik führte. Die Poincaré-Vermutung ist nicht nur ein mathematisches Meisterwerk, sondern auch der erste Fall, in dem ein Millennium-Preis für die Lösung eines Problems vergeben wurde.