StudierendeLehrende

Hahn-Banach Separation Theorem

Das Hahn-Banach-Trennungs-Theorem ist ein fundamentales Resultat der funktionalen Analysis und der geometrischen Mathematik, das sich mit der Trennung konvexer Mengen befasst. Es besagt, dass zwei nicht überlappende konvexe Mengen in einem normierten Raum durch eine hyperplane (eine affine Hyperebene) getrennt werden können. Genauer gesagt, wenn CCC und DDD zwei nicht leere konvexe Mengen sind, sodass C∩D=∅C \cap D = \emptysetC∩D=∅, gibt es eine lineare Funktional fff und einen Skalar α\alphaα, so dass:

f(x)≤α∀x∈Cundf(y)≥α∀y∈D.f(x) \leq \alpha \quad \forall x \in C \quad \text{und} \quad f(y) \geq \alpha \quad \forall y \in D.f(x)≤α∀x∈Cundf(y)≥α∀y∈D.

Dies bedeutet, dass die Menge CCC auf einer Seite der Hyperplane und die Menge DDD auf der anderen Seite liegt. Das Theorem ist besonders nützlich in der Optimierung und der Spieltheorie, da es ermöglicht, Probleme geometrisch zu formulieren und Lösungen zu finden, indem die Trennbarkeit von Lösungen und Constraints untersucht wird.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Vakuumfluktuationen in QFT

In der Quantenfeldtheorie (QFT) bezeichnet der Begriff Vakuumschwankungen die temporären und spontan auftretenden Änderungen im Energiezustand des Vakuums. Obwohl das Vakuum als der niedrigste Energiezustand eines Systems betrachtet wird, ist es nicht einfach leer; es ist von ständig wechselnden Quantenfeldern durchzogen. Diese Schwankungen führen dazu, dass Teilchenpaare (z.B. Elektron-Positron-Paare) für sehr kurze Zeiträume entstehen und wieder annihilieren, ohne die Energieerhaltung zu verletzen, dank der Heisenbergschen Unschärferelation.

Die Auswirkungen dieser Vakuumschwankungen sind in verschiedenen physikalischen Phänomenen sichtbar, wie beispielsweise dem Casimir-Effekt, bei dem zwei nahe beieinander stehende Platten im Vakuum aufgrund der Fluktuationen eine anziehende Kraft erfahren. Auch in der modernen Kosmologie spielt das Konzept der Vakuumschwankungen eine Rolle, insbesondere in der Diskussion über die dunkle Energie und die beschleunigte Expansion des Universums.

Zustandsregelung

State Feedback ist eine Regelungstechnik, die in der System- und Regelungstechnik verwendet wird, um das Verhalten dynamischer Systeme zu steuern. Bei dieser Methode wird der Zustand des Systems, der durch einen Vektor xxx beschrieben wird, direkt in die Regelstrategie einbezogen. Der Regler berechnet ein Steuersignal uuu in Abhängigkeit von den aktuellen Zuständen des Systems, typischerweise durch die Gleichung:

u=−Kxu = -Kxu=−Kx

Hierbei steht KKK für die Rückführungsmatrix, die die Rückführung der Zustände gewichtet. Ziel ist es, das Systemverhalten zu optimieren, indem Stabilität und gewünschte dynamische Eigenschaften erreicht werden. Ein wesentlicher Vorteil von State Feedback ist die Möglichkeit, die Pole des geschlossenen Regelkreises zu platzieren, was die Reaktion des Systems gezielt beeinflusst. Diese Technik findet Anwendung in zahlreichen Bereichen, darunter Robotik, Automatisierungstechnik und Luftfahrt.

Reale Optionen Bewertungsmethoden

Die Real Options Valuation Methods (ROV) sind Bewertungsverfahren, die es Unternehmen ermöglichen, strategische Entscheidungen unter Unsicherheit zu treffen, indem sie die Flexibilität berücksichtigen, die mit verschiedenen Handlungsoptionen verbunden ist. Im Gegensatz zu traditionellen Bewertungsmethoden, die oft statische Annahmen über zukünftige Cashflows treffen, erkennen ROV die Möglichkeit an, Entscheidungen zu verschieben, zu ändern oder zu beenden, basierend auf sich ändernden Marktbedingungen oder Informationen. Diese Ansätze nutzen oft mathematische Modelle, wie das Black-Scholes-Modell oder die Binomialmethode, um den Wert von Optionen zu quantifizieren, die im Rahmen von Investitionsprojekten bestehen.

Ein typisches Beispiel für ROV ist die Entscheidung, ein Projekt zu starten oder zu verzögern, abhängig von den zukünftigen Preisentwicklungen eines Rohstoffs. Durch die Bewertung dieser Optionen können Unternehmen die potenziellen Vorteile ihrer strategischen Flexibilität besser erfassen und somit informiertere Entscheidungen treffen. In der Praxis wird häufig eine Kombination aus quantitativen und qualitativen Analysen verwendet, um die Risiken und Chancen, die mit realen Optionen verbunden sind, umfassend zu bewerten.

Nanoporöse Materialadsorptionseigenschaften

Nanoporöse Materialien sind Materialien, die extrem kleine Poren mit Durchmessern im Nanometerbereich enthalten, typischerweise zwischen 1 und 100 Nanometern. Diese speziellen Materialien weisen herausragende Adsorptionseigenschaften auf, die durch die große spezifische Oberfläche und das Volumen der Poren bedingt sind. Aufgrund ihrer Struktur können sie Moleküle und Ionen effektiv an ihrer Oberfläche festhalten, was sie ideal für Anwendungen in der Katalyse, der Gastrennung und der Umwelttechnologie macht.

Die Adsorption in nanoporösen Materialien kann durch verschiedene physikalische und chemische Kräfte beeinflusst werden, darunter van der Waals-Kräfte, Wasserstoffbrückenbindungen und elektrostatische Wechselwirkungen. Mathematisch wird die Adsorption häufig durch das Freundlich- oder Langmuir-Modell beschrieben, wobei die Gleichgewichtskapazität als Funktion der Konzentration dargestellt wird. Ein zentrales Konzept ist die Langmuir-Isotherme, welche die maximale Adsorptionskapazität qmaxq_{max}qmax​ und die Affinität KLK_LKL​ beschreibt, was durch die Gleichung

qqmax=KL⋅C1+KL⋅C\frac{q}{q_{max}} = \frac{K_L \cdot C}{1 + K_L \cdot C}qmax​q​=1+KL​⋅CKL​⋅C​

ausgedrückt wird, wobei qqq die Adsorptions

Riemann-Zeta

Die Riemann-Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt. Sie wird definiert für komplexe Zahlen sss mit dem Realteil größer als 1 durch die unendliche Reihe:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, außer bei s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein besonders bemerkenswerter Aspekt der Riemann-Zeta-Funktion ist ihre Verbindung zur Verteilung der Primzahlen, wie im berühmten Riemann-Hypothese formuliert, die besagt, dass alle nicht-trivialen Nullstellen der Funktion eine bestimmte Eigenschaft bezüglich ihrer Lage auf der kritischen Linie Re(s)=12\text{Re}(s) = \frac{1}{2}Re(s)=21​ haben. Die Zeta-Funktion spielt auch eine wichtige Rolle in verschiedenen Bereichen der Mathematik und Physik, einschließlich der Quantenmechanik und der statistischen Physik.

Ladungsträgerbeweglichkeit in Halbleitern

Die Ladungsträgerbeweglichkeit (Charge Carrier Mobility) in Halbleitern beschreibt, wie schnell sich elektrische Ladungsträger, wie Elektronen und Löcher, durch das Material bewegen können, wenn ein elektrisches Feld angelegt wird. Ihre Mobilität wird oft durch den Parameter μ (Mikro) dargestellt und hängt von verschiedenen Faktoren ab, darunter die Temperatur, die Dotierungskonzentration und die Kristallstruktur des Halbleiters. Die Mobilität kann mathematisch durch die Beziehung

μ=vdE\mu = \frac{v_d}{E}μ=Evd​​

definiert werden, wobei vdv_dvd​ die Driftgeschwindigkeit der Ladungsträger und EEE die Stärke des elektrischen Feldes ist. Eine hohe Mobilität bedeutet, dass die Ladungsträger schnell und effizient transportiert werden können, was entscheidend für die Leistung von elektronischen Bauelementen wie Transistoren und Dioden ist. In der Praxis können verschiedene Mechanismen, wie Streuung durch phononische oder strukturelle Defekte, die Mobilität einschränken und somit die Effizienz von Halbleiterbauelementen beeinflussen.