StudierendeLehrende

Multijunction Solar Cell Physics

Multijunction-Solarzellen sind fortschrittliche photovoltaische Materialien, die aus mehreren Schichten bestehen, die jeweils auf verschiedene Wellenlängen des Sonnenlichts abgestimmt sind. Diese Schichten sind so konzipiert, dass sie die Absorption des Lichts maximieren und die Effizienz der Umwandlung von Sonnenenergie in elektrische Energie erhöhen. Der Hauptvorteil dieser Technologie liegt in ihrer Fähigkeit, die Bandlücken der Materialien gezielt zu wählen, sodass jede Schicht die Energie eines bestimmten Teils des Lichtspektrums nutzen kann.

Ein typisches Beispiel ist die Verwendung von Materialien wie Galliumarsenid (GaAs) für die obere Schicht und Indiumgalliumphosphid (InGaP) für die mittlere Schicht. Dabei folgt die Effizienz oft einer Beziehung, die durch die Schichten und deren Bandlücken definiert ist. Die theoretische maximale Effizienz einer Multijunction-Solarzelle kann bis zu 45% erreichen, verglichen mit nur etwa 20% für herkömmliche einlagige Solarzellen, da sie einen größeren Teil des Spektrums des Sonnenlichts effektiv nutzen können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Jordan-Kurve

Eine Jordan Curve ist eine geschlossene, einfache Kurve in der Ebene, die sich nicht selbst schneidet. Sie ist benannt nach dem Mathematiker Camille Jordan, der in seinem Werk von 1887 das berühmte Jordan-Kurvensatz formulierte. Dieser Satz besagt, dass eine solche Kurve die Ebene in genau zwei Regionen unterteilt: eine Innere und eine Äußere. Die Innere Region ist zusammenhängend und wird von der Kurve vollständig umschlossen. Eine wichtige Eigenschaft der Jordan Curve ist, dass jeder Punkt außerhalb der Kurve von Punkten innerhalb der Kurve durch eine Linie verbunden werden kann, die die Kurve nicht schneidet. Diese Konzepte sind grundlegend in der Topologie und finden Anwendung in verschiedenen Bereichen der Mathematik und Informatik.

Bioinformatik-Algorithmus-Design

Die Algorithmusgestaltung in der Bioinformatik befasst sich mit der Entwicklung effizienter mathematischer und computerbasierter Methoden zur Analyse biologischer Daten. Diese Algorithmen sind entscheidend für Anwendungen wie die Genomsequenzierung, Proteinfaltung und das Verständnis von biologischen Netzwerken. Ein zentraler Aspekt ist die Optimierung der Rechenzeit und des Speicherbedarfs, da biologische Datensätze oft extrem groß und komplex sind. Zu den häufig verwendeten Techniken gehören dynamische Programmierung, Graphentheorie und Maschinelles Lernen, die es ermöglichen, Muster und Beziehungen in den Daten zu erkennen. Darüber hinaus müssen die Algorithmen oft an spezifische biologische Fragestellungen angepasst werden, um präzise und relevante Ergebnisse zu liefern.

Dünnschichtinterferenzbeschichtungen

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda2nd=mλ

beschrieben, wobei nnn der Brechungsindex, ddd die Dicke der Schicht, mmm eine ganze Zahl (Ordnung der Interferenz) und λ\lambdaλ die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,

Wannier-Funktion

Die Wannier-Funktion ist ein Konzept aus der Festkörperphysik, das verwendet wird, um die Elektronenwellenfunktionen in einem Kristallgitter zu beschreiben. Sie stellt eine lokalisierte Darstellung der Elektronenzustände dar und ist besonders nützlich für die Analyse von Bandstrukturen und topologischen Eigenschaften von Materialien. Mathematisch wird eine Wannier-Funktion Wn(r)W_n(\mathbf{r})Wn​(r) aus den Bloch-Funktionen ψn,k(r)\psi_{n,\mathbf{k}}(\mathbf{r})ψn,k​(r) abgeleitet, indem eine Fourier-Transformation über den gesamten Brillouin-Zone-Bereich durchgeführt wird:

Wn(r)=1N∑keik⋅rψn,k(r),W_n(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k}}(\mathbf{r}),Wn​(r)=N​1​k∑​eik⋅rψn,k​(r),

wobei NNN die Anzahl der k-punkte ist. Die Wannier-Funktionen sind orthonormiert und können verwendet werden, um die elektronischen Eigenschaften von Materialien zu untersuchen, insbesondere in Bezug auf Korrelationsphänomene und wenig-kopplungs Modelle. Ihre Lokalisierung ermöglicht es, die Wechselwirkungen zwischen Elektronen in einem Kristall effektiv zu simulieren und zu verstehen.

Adverse Selection

Adverse Selection bezieht sich auf ein Informationsproblem, das auftritt, wenn eine Partei in einem Vertrag über mehr Informationen verfügt als die andere. Dies führt häufig dazu, dass die weniger informierte Partei ungünstige Entscheidungen trifft. Ein klassisches Beispiel findet sich im Versicherungswesen: Personen, die wissen, dass sie ein höheres Risiko haben, sind eher geneigt, eine Versicherung abzuschließen, während gesunde Personen möglicherweise ganz auf eine Versicherung verzichten. Dies kann dazu führen, dass Versicherer überwiegend risikobehaftete Kunden anziehen, was ihre Kosten erhöht und letztlich zu höheren Prämien für alle führt. Um diesem Problem entgegenzuwirken, versuchen Unternehmen oft, durch Risikobewertung oder Prüfungsmaßnahmen die Qualität der Informationen zu verbessern und ein ausgewogenes Verhältnis zwischen Risiko und Prämie zu schaffen.

Mundell-Fleming-Modell

Das Mundell-Fleming-Modell ist ein wirtschaftswissenschaftliches Modell, das die Wechselwirkungen zwischen dem Gütermarkt und dem Geldmarkt in einer offenen Volkswirtschaft beschreibt. Es erweitert das IS-LM-Modell, indem es die Einflüsse von Außenhandel und Kapitalbewegungen berücksichtigt. Das Modell basiert auf der Annahme, dass es drei Hauptvariablen gibt: den Zinssatz, die Wechselkurse und das nationale Einkommen.

Das Modell unterscheidet zwischen zwei extremen Regimes: dem festen Wechselkurs und dem flexiblen Wechselkurs. Bei einem festen Wechselkurs ist die Geldpolitik weniger effektiv, weil die Zentralbank eingreifen muss, um den Wechselkurs stabil zu halten. Im Gegensatz dazu kann die Geldpolitik bei einem flexiblen Wechselkurs effektiver eingesetzt werden, um das nationale Einkommen zu steuern. Das Mundell-Fleming-Modell ist besonders nützlich für die Analyse von wirtschaftlichen Schocks und deren Auswirkungen auf die Geld- und Fiskalpolitik in offenen Volkswirtschaften.