StudierendeLehrende

Quantum Entanglement

Die Quantenverschränkung beschreibt ein faszinierendes Phänomen in der Quantenmechanik, bei dem zwei oder mehr Teilchen so miteinander verbunden sind, dass der Zustand eines Teilchens instantan den Zustand des anderen beeinflusst, egal wie weit sie voneinander entfernt sind. Diese Verschränkung tritt auf, wenn Teilchen in einem gemeinsamen Quantenzustand erzeugt oder interagiert werden, sodass ihre Eigenschaften nicht unabhängig voneinander betrachtet werden können. Wenn man beispielsweise den Spin eines der Teilchen misst, erfährt man sofort den Spin des anderen Teilchens, selbst wenn es sich Lichtjahre entfernt befindet.

Ein zentrales Merkmal der Quantenverschränkung ist, dass sie die klassischen Vorstellungen von Raum und Zeit herausfordert und zu nicht-lokalen Effekten führt. Diese Eigenschaften haben weitreichende Implikationen für die Quanteninformatik und die Entwicklung von Quantencomputern, da sie die Grundlage für Quantenkommunikation und Quantenkryptografie bilden.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Kalman-Filterung in der Robotik

Kalman-Filter sind eine leistungsstarke Methode zur Schätzung des Zustands eines dynamischen Systems in der Robotik. Sie kombinieren Messungen von Sensoren mit Modellen der Fahrzeugbewegung, um präzisere Schätzungen der Position und Geschwindigkeit zu liefern. Der Filter arbeitet in zwei Hauptschritten: dem Vorhersageschritt, in dem der zukünftige Zustand basierend auf dem aktuellen Zustand und dem Bewegungsmodell geschätzt wird, und dem Aktualisierungsschritt, in dem die Schätzung mit den neuen Messdaten aktualisiert wird. Mathematisch wird die Schätzung durch die Gleichungen:

x^k∣k−1=Fkx^k−1∣k−1+Bkuk\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_kx^k∣k−1​=Fk​x^k−1∣k−1​+Bk​uk​

und

x^k∣k=x^k∣k−1+Kk(zk−Hkx^k∣k−1)\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k (z_k - H_k \hat{x}_{k|k-1})x^k∣k​=x^k∣k−1​+Kk​(zk​−Hk​x^k∣k−1​)

definiert, wobei x^\hat{x}x^ die Schätzung, FFF die Übergangsmatrix, BBB die Steuerungsmatrix, KKK die Kalman-Verstärkung, zzz die Messung und HHH die Beobachtungsmatrix darstellt. Durch die Verwendung des Kalman-Filters können Roboter ihre Position und Orientierung in Echt

Keynesianischer Schönheitswettbewerb

Der Keynesian Beauty Contest ist ein Konzept aus der Ökonomie, das von dem britischen Ökonomen John Maynard Keynes eingeführt wurde. Es beschreibt, wie Investoren oft nicht nur ihre eigenen Meinungen über den Wert eines Vermögenswertes bilden, sondern auch versuchen, die Meinungen anderer Marktteilnehmer vorherzusagen. In diesem Wettbewerb geht es darum, den „schönsten“ Teilnehmer zu wählen, wobei die Schönheit nicht objektiv, sondern durch die Präferenzen der Mehrheit bestimmt wird.

In diesem Sinne könnten Anleger dazu verleitet werden, in Vermögenswerte zu investieren, die sie für die attraktivsten halten, basierend auf dem, was sie glauben, dass andere Investoren ebenfalls für attraktiv halten. Dies führt zu einer Kettenreaktion, in der die Marktpreise von Erwartungen und Spekulationen dominiert werden, anstatt von den zugrunde liegenden wirtschaftlichen Fundamentaldaten. Der Keynesian Beauty Contest verdeutlicht somit die Rolle von Erwartungen und Psychologie im Finanzmarkt und hebt die Abweichung zwischen Marktpreisen und tatsächlichem Wert hervor.

Implizites Runge-Kutta

Der implizite Runge-Kutta-Algorithmus ist eine erweiterte Methode zur Lösung von gewöhnlichen Differentialgleichungen, die besonders vorteilhaft ist, wenn es um steife Probleme geht. Im Gegensatz zu expliziten Methoden, bei denen der nächste Schritt direkt aus den bekannten Werten berechnet wird, erfordert die implizite Methode die Lösung eines Gleichungssystems, das die Unbekannten des nächsten Schrittes enthält.

Die allgemeine Form einer impliziten Runge-Kutta-Methode kann durch folgende Gleichungen dargestellt werden:

yn+1=yn+h∑i=1sbikiy_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_iyn+1​=yn​+hi=1∑s​bi​ki​ ki=f(tn+cih,yn+h∑j=1iaijkj)k_i = f(t_n + c_i h, y_n + h \sum_{j=1}^{i} a_{ij} k_j)ki​=f(tn​+ci​h,yn​+hj=1∑i​aij​kj​)

Hierbei sind hhh die Schrittweite, kik_iki​ die Stützwerte und aij,bi,cia_{ij}, b_i, c_iaij​,bi​,ci​ die Butcher-Tabelle Parameter, die die Methode definieren. Der Hauptvorteil dieser Methoden liegt in ihrer Fähigkeit, stabilere Lösungen für Probleme zu bieten, die schnelle Änderungen oder große Unterschiede in den Skalen aufweisen. Daher sind sie besonders nützlich in der Ingenieurwissenschaft und Physik, wo steife Differentialgleichungen häufig auftreten.

Graphen-Nanoribbon-Transporteigenschaften

Graphene-Nanoribbons (GNRs) sind dünne Streifen aus Graphen, die einzigartige Transporteigenschaften aufweisen und aufgrund ihrer strukturellen Eigenschaften sowohl für elektronische als auch für optoelektronische Anwendungen von großem Interesse sind. Die Transportcharakteristik von GNRs hängt stark von ihrer Breite und der Art ihrer Kanten (zigzag oder armchair) ab, was zu unterschiedlichen elektrischen Leitfähigkeiten führt. Bei zigzag-Nanoribbons zum Beispiel können elektronische Zustände am Kantenrand existieren, die die Leitfähigkeit erhöhen, während armchair-Nanoribbons eine Bandlücke aufweisen, die die Transportfähigkeit bei bestimmten Bedingungen beeinflussen kann.

Die Transportparameter wie Mobilität und Leitfähigkeit werden auch durch Faktoren wie Temperatur, Verunreinigungen und Defekte beeinflusst. Mathematisch lassen sich diese Eigenschaften oft durch die Gleichung für den elektrischen Strom III in Abhängigkeit von der Spannung VVV und dem Widerstand RRR darstellen:

I=VRI = \frac{V}{R}I=RV​

Insgesamt zeigen GNRs vielversprechende Eigenschaften für zukünftige Technologien, insbesondere in der Entwicklung von nanoelektronischen Bauelementen und Sensoren.

Stochastischer Abzinsungsfaktor Asset Pricing

Das Konzept des Stochastic Discount Factor (SDF) Asset Pricing ist ein zentraler Bestandteil der modernen Finanzwirtschaft und dient zur Bewertung von Vermögenswerten unter Unsicherheit. Der SDF, oft auch als stochastischer Abzinsungsfaktor bezeichnet, ist ein Faktor, der zukünftige Cashflows auf ihren gegenwärtigen Wert abbildet, indem er die Unsicherheit und das Risiko, die mit diesen Cashflows verbunden sind, berücksichtigt. Mathematisch wird der SDF oft als MtM_tMt​ dargestellt, wobei ttt den Zeitpunkt angibt. Die Grundidee ist, dass der Preis eines Vermögenswerts PtP_tPt​ als der erwartete Wert der zukünftigen Cashflows Ct+1C_{t+1}Ct+1​, abgezinst mit dem SDF, ausgedrückt werden kann:

Pt=E[MtCt+1]P_t = \mathbb{E}[M_{t} C_{t+1}]Pt​=E[Mt​Ct+1​]

Hierbei steht E\mathbb{E}E für den Erwartungswert. Der SDF ist entscheidend, weil er die Risikoeinstellungen der Investoren sowie die Marktbedingungen reflektiert. Dieses Modell ermöglicht es, die Preise von Vermögenswerten in einem dynamischen Umfeld zu analysieren und zu verstehen, wie Risikofaktoren die Renditen beeinflussen.

Dirac-Delta

Die Dirac-Delta-Funktion, oft einfach als Delta-Funktion bezeichnet, ist ein mathematisches Konzept, das in der Physik und Ingenieurwissenschaft häufig verwendet wird. Sie wird definiert als eine Funktion δ(x)\delta(x)δ(x), die an einem Punkt x=0x = 0x=0 unendlich hoch ist und außerhalb dieses Punktes den Wert 0 annimmt. Formal wird sie so beschrieben:

δ(x)={∞fu¨r x=00fu¨r x≠0\delta(x) = \begin{cases} \infty & \text{für } x = 0 \\ 0 & \text{für } x \neq 0 \end{cases}δ(x)={∞0​fu¨r x=0fu¨r x=0​

Ein zentrales Merkmal der Dirac-Delta-Funktion ist, dass das Integral über die gesamte Funktion gleich 1 ist:

∫−∞∞δ(x) dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1∫−∞∞​δ(x)dx=1

Die Delta-Funktion wird häufig verwendet, um ideale Punktquellen oder -impulse zu modellieren, da sie es ermöglicht, physikalische Phänomene wie elektrische Ladungen oder mechanische Kräfte, die an einem bestimmten Punkt wirken, präzise zu beschreiben. In der Theorie der Fourier-Transformation spielt die Dirac-Delta-Funktion eine entscheidende Rolle, da sie als "Sonde" für die Frequenzanalyse fungiert.