StudierendeLehrende

Viterbi Algorithm In Hmm

Der Viterbi-Algorithmus ist ein dynamisches Programmierungsverfahren, das in versteckten Markov-Modellen (HMMs) verwendet wird, um die wahrscheinlichste Sequenz von Zuständen zu bestimmen, die eine gegebene Beobachtungssequenz erzeugt haben. Er arbeitet auf der Grundlage der Annahme, dass die Zustände eines Systems Markov-Eigenschaften besitzen, wobei der aktuelle Zustand nur vom vorherigen Zustand abhängt. Der Algorithmus durchläuft die Beobachtungssequenz und berechnet rekursiv die höchsten Wahrscheinlichkeiten für jeden Zustand zu jedem Zeitpunkt, unter Berücksichtigung der Übergangswahrscheinlichkeiten und der Emissionswahrscheinlichkeiten.

Die Berechnung erfolgt in zwei Hauptschritten:

  1. Vorwärts-Schritt: Berechnung der maximalen Wahrscheinlichkeiten für jeden Zustand zu jedem Zeitpunkt.
  2. Rückwärts-Schritt: Rekonstruktion der Zustandssequenz, indem man die wahrscheinlichsten Zustände verfolgt, die zu den maximalen Wahrscheinlichkeiten führten.

Mathematisch wird dies oft wie folgt ausgedrückt:

δt(j)=max⁡i(δt−1(i)⋅aij)⋅bj(ot)\delta_t(j) = \max_{i} (\delta_{t-1}(i) \cdot a_{ij}) \cdot b_j(o_t)δt​(j)=imax​(δt−1​(i)⋅aij​)⋅bj​(ot​)

wobei δt(j)\delta_t(j)δt​(j) die maximale Wahrscheinlichkeit angibt, dass das System den Zustand $j

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Muon-anomales magnetisches Moment

Der Muon Anomalous Magnetic Moment (g-2) beschreibt die Abweichung des magnetischen Moments des Myons von dem, was durch die Dirac-Gleichung für Teilchen mit Spin 1/2 vorhergesagt wird. Das magnetische Moment eines Teilchens ist ein Maß dafür, wie es auf ein externes Magnetfeld reagiert. Im Fall des Myons wird das tatsächliche Verhältnis ggg (das magnetische Moment) durch die Gleichung g=2g = 2g=2 beschrieben, aber aufgrund von quantenmechanischen Effekten zeigt es eine kleine Abweichung, die als Anomalie bezeichnet wird. Diese Anomalie wird als aμ=g−22a_\mu = \frac{g-2}{2}aμ​=2g−2​ definiert, wobei aμa_\muaμ​ das Anomalous Magnetic Moment ist.

Die theoretische Berechnung dieser Anomalie umfasst Beiträge aus verschiedenen Feldtheorien, insbesondere der Quantenfeldtheorie, und spielt eine wichtige Rolle in der Suche nach neuen physikalischen Phänomenen jenseits des Standardmodells der Teilchenphysik. Experimentelle Messungen des Myon-Anomalous Magnetic Moment sind von großer Bedeutung, da sie die Vorhersagen der Theorie testen und Hinweise auf mögliche neue Teilchen oder Interaktionen liefern können.

Knuth-Morris-Pratt-Vorverarbeitung

Der Knuth-Morris-Pratt (KMP) Algorithmus ist ein effizienter Algorithmus zur Mustererkennung in Strings, der eine Vorverarbeitung des Musters nutzt, um die Suche zu optimieren. Während der Preprocessing-Phase wird ein Prefix-Suffix Array (häufig als lps\text{lps}lps bezeichnet) erstellt, das für jedes Zeichen im Muster die Länge des längsten Präfixes angibt, das gleichzeitig auch ein Suffix ist. Diese Informationen ermöglichen es, bei einer Mismatch-Situation im Suchprozess das Muster nicht vollständig neu auszurichten, sondern an einer geeigneten Position weiterzumachen, was die Effizienz erheblich steigert. Der Algorithmus hat eine Laufzeit von O(n+m)O(n + m)O(n+m), wobei nnn die Länge des Textes und mmm die Länge des Musters ist. Durch die geschickte Nutzung des lps\text{lps}lps-Arrays wird die Anzahl der Vergleiche minimiert und die Suche somit schneller und effizienter gestaltet.

Rationale Blasen

Rational Bubbles beziehen sich auf Situationen in Finanzmärkten, in denen die Preise von Vermögenswerten über ihren intrinsischen Wert hinaus steigen, basierend auf der Erwartung, dass zukünftige Käufer bereit sind, noch höhere Preise zu zahlen. Diese Preisblasen entstehen oft, weil Investoren rationale Entscheidungen treffen und die Möglichkeit, von einem Preisanstieg zu profitieren, als attraktiver empfinden als den tatsächlichen Wert des Vermögenswertes. Die Theorie hinter Rational Bubbles kann durch das Konzept der erwarteten zukünftigen Preise beschrieben werden, wobei Investoren ihre Kaufentscheidungen auf der Annahme stützen, dass andere Investoren ebenfalls kaufen werden, um von den steigenden Preisen zu profitieren.

Mathematisch kann dies durch die Gleichung für den Preis eines Vermögenswertes PtP_tPt​ dargestellt werden:

Pt=Et[Pt+1]+D(1+r)P_t = E_t[P_{t+1}] + \frac{D}{(1+r)}Pt​=Et​[Pt+1​]+(1+r)D​

wobei Et[Pt+1]E_t[P_{t+1}]Et​[Pt+1​] die erwartete zukünftige Preisentwicklung, DDD die Dividende und rrr der Diskontsatz ist. Rational Bubbles können jedoch nicht ewig bestehen bleiben und enden oft abrupt, wenn die Marktteilnehmer realisieren, dass die Preise nicht durch fundamentale Werte gestützt sind, was zu einem plötzlichen Preisverfall führt.

Multijunction-Solarzellenphysik

Multijunction-Solarzellen sind fortschrittliche photovoltaische Materialien, die aus mehreren Schichten bestehen, die jeweils auf verschiedene Wellenlängen des Sonnenlichts abgestimmt sind. Diese Schichten sind so konzipiert, dass sie die Absorption des Lichts maximieren und die Effizienz der Umwandlung von Sonnenenergie in elektrische Energie erhöhen. Der Hauptvorteil dieser Technologie liegt in ihrer Fähigkeit, die Bandlücken der Materialien gezielt zu wählen, sodass jede Schicht die Energie eines bestimmten Teils des Lichtspektrums nutzen kann.

Ein typisches Beispiel ist die Verwendung von Materialien wie Galliumarsenid (GaAs) für die obere Schicht und Indiumgalliumphosphid (InGaP) für die mittlere Schicht. Dabei folgt die Effizienz oft einer Beziehung, die durch die Schichten und deren Bandlücken definiert ist. Die theoretische maximale Effizienz einer Multijunction-Solarzelle kann bis zu 45% erreichen, verglichen mit nur etwa 20% für herkömmliche einlagige Solarzellen, da sie einen größeren Teil des Spektrums des Sonnenlichts effektiv nutzen können.

Chern-Zahl

Die Chern-Zahl ist ein topologisches Invarianzmaß, das in der Mathematik und Physik, insbesondere in der Festkörperphysik und der Quantenfeldtheorie, eine wichtige Rolle spielt. Sie quantifiziert die Topologie von Energiebandstrukturen in Materialien und spielt eine entscheidende Rolle bei der Klassifizierung von topologischen Phasen. Mathematisch wird die Chern-Zahl als Integral über die erste Chern-Klasse c1c_1c1​ einer gegebenen, komplexen Vektorfeldstruktur definiert:

C=12π∫BZF(k) dkC = \frac{1}{2\pi} \int_{BZ} F(k) \, dkC=2π1​∫BZ​F(k)dk

Hierbei ist F(k)F(k)F(k) die Berry-Krümmung, die aus dem Berry-Potential abgeleitet wird, und BZBZBZ steht für die Brillouin-Zone. Ein bemerkenswerter Aspekt der Chern-Zahl ist, dass sie nur ganze Zahlen annehmen kann, was bedeutet, dass topologisch unterschiedliche Zustände nicht kontinuierlich ineinander überführt werden können, ohne dass Phasenumstellungen auftreten. Dies hat tiefgreifende Konsequenzen für das Verständnis von Phänomenen wie dem quantisierten Hall-Effekt und anderen topologischen Phasen in Festkörpern.

Caratheodory-Kriterium

Das Caratheodory-Kriterium ist ein wichtiges Konzept in der Analysis, das sich mit der Konvexität von Mengen befasst. Es besagt, dass ein Punkt xxx in einem Raum Rn\mathbb{R}^nRn innerhalb einer konvexen Menge CCC liegt, wenn und nur wenn er als konvexe Kombination von Punkten aus CCC dargestellt werden kann. Formal bedeutet dies, dass es Punkte x1,x2,…,xk∈Cx_1, x_2, \ldots, x_k \in Cx1​,x2​,…,xk​∈C und nicht-negative Koeffizienten λ1,λ2,…,λk\lambda_1, \lambda_2, \ldots, \lambda_kλ1​,λ2​,…,λk​ gibt, sodass:

x=∑i=1kλiximit∑i=1kλi=1x = \sum_{i=1}^{k} \lambda_i x_i \quad \text{mit} \quad \sum_{i=1}^{k} \lambda_i = 1x=i=1∑k​λi​xi​miti=1∑k​λi​=1

Dies ist besonders nützlich in der Optimierung und der ökonomischen Theorie, da es hilft, die Struktur von Lösungen zu verstehen. Das Kriterium verdeutlicht, dass die konvexen Mengen durch ihre Randpunkte vollständig beschrieben werden können, was zu einer effizienteren Analyse führt.