StudierendeLehrende

Currency Pegging

Currency Pegging ist eine wirtschaftliche Strategie, bei der der Wert einer Währung an eine andere Währung oder an einen Korb von Währungen gebunden wird. Dies geschieht oft, um Stabilität in der Wechselkursrate zu gewährleisten und die Inflation zu kontrollieren. Ein häufiges Beispiel ist die Bindung einer nationalen Währung an den US-Dollar, was bedeutet, dass der Wechselkurs zwischen der lokalen Währung und dem Dollar konstant gehalten wird.

Die Zentralbank des Landes interveniert in den Devisenmarkt, um den festgelegten Wechselkurs beizubehalten, indem sie Währungsreserven kauft oder verkauft. Es gibt verschiedene Arten von Pegging, darunter:

  • Fester Peg: Der Wechselkurs bleibt konstant.
  • Gleitender Peg: Der Wechselkurs kann innerhalb eines bestimmten Rahmens schwanken.

Diese Strategie kann sowohl Vorteile, wie erhöhte wirtschaftliche Stabilität, als auch Nachteile, wie Verlust der geldpolitischen Autonomie, mit sich bringen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Pareto-Effizienz

Pareto Efficiency, auch als Pareto-Optimalität bekannt, ist ein Konzept aus der Wirtschaftswissenschaft, das eine Ressourcenzuteilung beschreibt, bei der es nicht möglich ist, jemanden besserzustellen, ohne dabei eine andere Person schlechterzustellen. In einem Zustand der Pareto-Effizienz sind alle Ressourcen so verteilt, dass jeder Nutzen maximiert ist, und jede Umverteilung der Ressourcen zu einer Person zu Lasten einer anderen Person führen würde.

Mathematisch ausgedrückt ist eine Verteilung von Ressourcen xxx Pareto-effizient, wenn es keinen anderen Punkt yyy gibt, so dass yyy mindestens eine Person besserstellt und keine Person schlechterstellt. Ein Beispiel zur Veranschaulichung: Angenommen, es gibt zwei Personen, A und B, und sie teilen sich einen Kuchen. Wenn A mehr Kuchen bekommt, kann B nur weniger bekommen, was bedeutet, dass die aktuelle Verteilung Pareto-effizient ist, solange es keine Möglichkeit gibt, beide besserzustellen.

Bose-Einstein

Die Bose-Einstein-Kondensation ist ein physikalisches Phänomen, das auftritt, wenn Bosonen, eine Klasse von Teilchen, bei extrem niedrigen Temperaturen in einen gemeinsamen, quantenmechanischen Zustand übergehen. Dies führt dazu, dass eine große Anzahl von Teilchen denselben quantenmechanischen Zustand einnimmt, was zu Eigenschaften führt, die sich stark von denen klassischer Materie unterscheiden.

Der Effekt wurde 1924 von dem indischen Physiker Satyendra Nath Bose und dem Physiker Albert Einstein theoretisch vorhergesagt. Bei Temperaturen nahe dem absoluten Nullpunkt (0 K0 \, \text{K}0K) beginnen Bosonen, wie z.B. Helium-4, sich in einer Weise zu organisieren, die zu einem Zustand führt, in dem alle Teilchen koordiniert handeln, was als Bose-Einstein-Kondensat bezeichnet wird. Dieses Phänomen hat bedeutende Anwendungen in der modernen Physik, einschließlich der Erforschung von Quantencomputern und supraleitenden Materialien.

Riemann-Zeta

Die Riemann-Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt. Sie wird definiert für komplexe Zahlen sss mit dem Realteil größer als 1 durch die unendliche Reihe:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, außer bei s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein besonders bemerkenswerter Aspekt der Riemann-Zeta-Funktion ist ihre Verbindung zur Verteilung der Primzahlen, wie im berühmten Riemann-Hypothese formuliert, die besagt, dass alle nicht-trivialen Nullstellen der Funktion eine bestimmte Eigenschaft bezüglich ihrer Lage auf der kritischen Linie Re(s)=12\text{Re}(s) = \frac{1}{2}Re(s)=21​ haben. Die Zeta-Funktion spielt auch eine wichtige Rolle in verschiedenen Bereichen der Mathematik und Physik, einschließlich der Quantenmechanik und der statistischen Physik.

Jordan-Zerlegung

Die Jordan-Zerlegung ist ein fundamentales Konzept in der linearen Algebra, das sich mit der Zerlegung von linearen Abbildungen und Matrizen beschäftigt. Sie besagt, dass jede quadratische Matrix AAA über dem komplexen Zahlenraum in eine spezielle Form gebracht werden kann, die als Jordan-Form bekannt ist. Diese Form besteht aus sogenannten Jordan-Blöcken, die eine Struktur besitzen, die sowohl die Eigenwerte als auch die algebraischen und geometrischen Vielfachheiten der Matrix berücksichtigt.

Die Jordan-Zerlegung kann mathematisch als folgende Gleichung dargestellt werden:

A=PJP−1A = PJP^{-1}A=PJP−1

Hierbei ist PPP eine invertierbare Matrix und JJJ die Jordan-Form von AAA. Die Jordan-Blöcke sind obere Dreiecksmatrizen, die auf der Hauptdiagonalen die Eigenwerte von AAA enthalten und auf der ersten Überdiagonalen Einsen haben können, was die nicht-diagonalisierbaren Teile der Matrix repräsentiert. Diese Zerlegung findet Anwendung in verschiedenen Bereichen, wie der Differentialgleichungstheorie und der Systemtheorie, um komplexe Systeme zu analysieren und zu lösen.

Frobenius-Norm

Die Frobenius Norm ist eine Methode zur Bewertung der Größe oder des Abstands einer Matrix. Sie wird definiert als die Quadratwurzel der Summe der Quadrate aller Elemente der Matrix. Mathematisch ausgedrückt für eine Matrix AAA mit den Elementen aija_{ij}aij​ lautet die Frobenius Norm:

∥A∥F=∑i=1m∑j=1n∣aij∣2\| A \|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}∥A∥F​=i=1∑m​j=1∑n​∣aij​∣2​

Hierbei ist mmm die Anzahl der Zeilen und nnn die Anzahl der Spalten der Matrix. Die Frobenius Norm findet Anwendung in verschiedenen Bereichen, darunter numerische lineare Algebra, maschinelles Lernen und Bildverarbeitung, da sie eine intuitive und leicht berechenbare Maßzahl für die Größe einer Matrix bietet. Sie ist auch besonders nützlich, um Matrizen zu vergleichen oder um deren Approximationen zu bewerten.

Superelastische Legierungen

Superelastische Legierungen sind spezielle Materialien, die in der Lage sind, außergewöhnliche elastische Verformungen zu zeigen, ohne dass es zu dauerhaften Deformationen kommt. Diese Legierungen, häufig auf Basis von Nickel-Titan (NiTi) hergestellt, nutzen den Effekt der martensitischen Transformation, um bei bestimmten Temperaturen und Belastungen ihre Form zu verändern und bei Entlastung wieder zurückzukehren. Sie können sich bis zu 8% ihrer ursprünglichen Länge dehnen, was sie ideal für Anwendungen in der Medizintechnik, wie z.B. bei Stents oder Zahnspangen, macht.

Ein weiteres bemerkenswertes Merkmal ist die Fähigkeit dieser Legierungen, bei Temperaturen unterhalb einer bestimmten Schwelle (der sogenannten Martensit-Temperatur) eine sehr hohe Flexibilität zu zeigen. Diese Eigenschaften machen sie nicht nur für technische Anwendungen attraktiv, sondern auch für den Einsatz in der Luft- und Raumfahrt sowie in der Robotik. Die physikalischen Grundlagen der Superelastizität können durch die Gleichung σ=E⋅ε\sigma = E \cdot \varepsilonσ=E⋅ε beschrieben werden, wobei σ\sigmaσ die Spannung, EEE der Elastizitätsmodul und ε\varepsilonε die Dehnung ist.