StudierendeLehrende

Welfare Economics

Welfare Economics ist ein Teilgebiet der Wirtschaftsökonomie, das sich mit der Bewertung des wirtschaftlichen Wohlstands und der Verteilung von Ressourcen in einer Gesellschaft beschäftigt. Es untersucht, wie verschiedene wirtschaftliche Entscheidungen und Politiken das Wohlergehen der Individuen beeinflussen. Zentrale Konzepte in der Wohlfahrtsökonomie sind die Effizienz und die Gerechtigkeit, wobei Effizienz bedeutet, dass die Ressourcen so verteilt werden, dass niemand besser gestellt werden kann, ohne dass jemand anderes schlechter gestellt wird (Pareto-Effizienz).

Ein häufig verwendetes Werkzeug in der Wohlfahrtsökonomie ist die Nutzenfunktion, die den individuellen Nutzen in Abhängigkeit von Konsumgütern beschreibt. Mathematisch kann dies durch die Funktion U(x1,x2,…,xn)U(x_1, x_2, \ldots, x_n)U(x1​,x2​,…,xn​) dargestellt werden, wobei xix_ixi​ die Menge des i-ten Gutes ist. Zusätzlich werden in der Wohlfahrtsökonomie oft Umverteilungsmechanismen und deren Auswirkungen auf die allgemeine Wohlfahrt analysiert, um herauszufinden, wie soziale Gerechtigkeit und wirtschaftliche Effizienz in Einklang gebracht werden können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Faltungssatz

Das Convolution Theorem ist ein fundamentales Konzept in der Fourier-Analyse und der Signalverarbeitung. Es besagt, dass die Fourier-Transformation der Faltung zweier Funktionen gleich dem Produkt der Fourier-Transformationen dieser Funktionen ist. Mathematisch ausgedrückt, für zwei Funktionen f(t)f(t)f(t) und g(t)g(t)g(t) gilt:

F{f∗g}=F{f}⋅F{g}\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}F{f∗g}=F{f}⋅F{g}

Hierbei bezeichnet ∗*∗ die Faltung und F\mathcal{F}F die Fourier-Transformation. Dies bedeutet, dass die Analyse von gefalteten Signalen im Frequenzbereich oft einfacher ist, als im Zeitbereich. Das Theorem ist besonders nützlich in der Signalverarbeitung, da es die Berechnung von gefalteten Signalen vereinfacht und hilft, die Eigenschaften von Systemen zu verstehen, die durch Faltung beschrieben werden.

Arithmetische Codierung

Arithmetic Coding ist ein effizientes Verfahren zur Datenkompression, das im Gegensatz zu traditionellen Methoden wie Huffman-Codierung arbeitet. Anstatt einzelne Symbole in Codes umzuwandeln, kodiert Arithmetic Coding eine gesamte Nachricht als eine einzelne Zahl in einem Intervall zwischen 0 und 1. Der Algorithmus nutzt die Wahrscheinlichkeitsverteilung der Symbole, um das Intervall fortlaufend zu verfeinern:

  1. Jedes Symbol wird einem bestimmten Teilintervall zugeordnet, das proportional zu seiner Wahrscheinlichkeit ist.
  2. Bei jedem neuen Symbol wird das aktuelle Intervall entsprechend dem Bereich, der diesem Symbol zugeordnet ist, angepasst.
  3. Am Ende der Kodierung wird eine Zahl innerhalb des letzten Intervalls gewählt, die die gesamte Nachricht repräsentiert.

Ein Vorteil von Arithmetic Coding ist, dass es theoretisch eine bessere Kompression als die Huffman-Codierung bietet, insbesondere bei langen Nachrichten mit einer bekannten Wahrscheinlichkeitsverteilung der Symbole.

Kolmogorov-Erweiterungssatz

Das Kolmogorov Extension Theorem ist ein fundamentales Resultat in der Wahrscheinlichkeitstheorie, das die Existenz von Wahrscheinlichkeitsmaßen für stochastische Prozesse sicherstellt. Es besagt, dass, wenn wir eine Familie von endlichen-dimensionalen Verteilungen haben, die konsistent sind (d.h. die Randverteilungen übereinstimmen), dann existiert ein eindeutiges Wahrscheinlichkeitsmaß auf dem Produktraum, das diese Verteilungen reproduziert.

In mathematischen Begriffen bedeutet das, wenn für jede endliche Teilmenge S⊆NS \subseteq \mathbb{N}S⊆N eine Wahrscheinlichkeitsverteilung PSP_SPS​ gegeben ist, die die Randverteilungen für jede Teilmenge beschreibt, dann kann man ein Wahrscheinlichkeitsmaß PPP auf dem Raum aller Funktionen ω:N→R\omega: \mathbb{N} \to \mathbb{R}ω:N→R (z.B. Pfade eines stochastischen Prozesses) konstruieren, sodass:

P(ω(t1)∈A1,…,ω(tn)∈An)=PS(A1×⋯×An)P(\omega(t_1) \in A_1, \ldots, \omega(t_n) \in A_n) = P_S(A_1 \times \cdots \times A_n)P(ω(t1​)∈A1​,…,ω(tn​)∈An​)=PS​(A1​×⋯×An​)

für alle endlichen t1,…,tnt_1, \ldots, t_nt1​,…,tn​ und Mengen A1,…,AnA_1, \ldots, A_nA1​,…,An​. Dieses

Kalman-Verstärkung

Der Kalman Gain ist ein entscheidendes Konzept im Kalman-Filter, einem Algorithmus, der zur Schätzung des Zustands eines dynamischen Systems verwendet wird. Er bestimmt, wie stark die Schätzung des aktuellen Zustands auf die neuen Messungen reagieren sollte. Der Kalman Gain wird durch die Gleichung

K=PpredHTHPpredHT+RK = \frac{P_{pred} H^T}{H P_{pred} H^T + R}K=HPpred​HT+RPpred​HT​

bestimmt, wobei KKK der Kalman Gain, PpredP_{pred}Ppred​ die vorhergesagte Kovarianz, HHH die Beobachtungsmatrix und RRR die Messrauschen-Kovarianz ist. Ein hoher Kalman Gain bedeutet, dass die neuen Messungen einen größeren Einfluss auf die Schätzung haben, während ein niedriger Gain darauf hindeutet, dass die vorherige Schätzung stärker gewichtet wird. Somit spielt der Kalman Gain eine zentrale Rolle bei der Balancierung zwischen Vorhersage und Messung, um die Genauigkeit der Zustandsabschätzung zu maximieren.

Strouhal-Zahl

Die Strouhal-Zahl ist eine dimensionslose Kennzahl, die in der Strömungsmechanik und der Aerodynamik verwendet wird, um das Verhältnis zwischen den Inertialkräften und den viskosen Kräften in einem Fluid zu beschreiben. Sie wird definiert als:

St=fLUSt = \frac{f L}{U}St=UfL​

wobei StStSt die Strouhal-Zahl, fff die Frequenz der Schwingung oder der von einem Körper verursachten Wirbelablösung, LLL eine charakteristische Länge des Körpers (z. B. der Durchmesser eines Zylinders) und UUU die Strömungsgeschwindigkeit ist. Diese Zahl ist besonders wichtig bei der Analyse von Strömungen um Körper, die oszillieren oder rotieren, da sie hilft, das Verhalten der Wirbelbildung und des Flusses zu verstehen. Eine hohe Strouhal-Zahl kann auf instabile Strömungsmuster hinweisen, während eine niedrige Zahl oft mit stabilen Strömungen assoziiert wird. In vielen praktischen Anwendungen, wie z. B. bei Flugzeugen oder Schiffen, ist die Strouhal-Zahl entscheidend für das Design und die Effizienz der Fahrzeuge.

Regge-Theorie

Die Regge-Theorie ist ein Konzept in der theoretischen Physik, das die Wechselwirkungen von Teilchen in der Hochenergie-Physik beschreibt. Sie wurde in den 1950er Jahren von Tullio Regge entwickelt und basiert auf dem Ansatz, dass die Streuamplituden von Teilchen nicht nur von den Energie- und Impulsübertragungen, sondern auch von den Trajektorien abhängen, die die Teilchen im komplexen Impulsraum verfolgen. Diese Trajektorien, bekannt als Regge-Trajektorien, sind Kurven, die die Beziehung zwischen dem Spin JJJ eines Teilchens und dem Quadrat des Impulses ttt beschreiben. Mathematisch wird dies oft durch den Ausdruck J(t)=J0+α′tJ(t) = J_0 + \alpha' tJ(t)=J0​+α′t dargestellt, wobei J0J_0J0​ der Spin des Teilchens bei t=0t = 0t=0 ist und α′\alpha'α′ die Steigung der Trajektorie im (J,t)(J,t)(J,t)-Diagramm beschreibt. Regge-Theorie hat nicht nur zur Erklärung von Hadronen-Streuung beigetragen, sondern auch zur Entwicklung des Stringtheorie-Ansatzes, indem sie eine tiefere Verbindung zwischen der Geometrie des Raums und den Eigenschaften von Teilchen aufzeigt.