StudierendeLehrende

Welfare Economics

Welfare Economics ist ein Teilgebiet der Wirtschaftsökonomie, das sich mit der Bewertung des wirtschaftlichen Wohlstands und der Verteilung von Ressourcen in einer Gesellschaft beschäftigt. Es untersucht, wie verschiedene wirtschaftliche Entscheidungen und Politiken das Wohlergehen der Individuen beeinflussen. Zentrale Konzepte in der Wohlfahrtsökonomie sind die Effizienz und die Gerechtigkeit, wobei Effizienz bedeutet, dass die Ressourcen so verteilt werden, dass niemand besser gestellt werden kann, ohne dass jemand anderes schlechter gestellt wird (Pareto-Effizienz).

Ein häufig verwendetes Werkzeug in der Wohlfahrtsökonomie ist die Nutzenfunktion, die den individuellen Nutzen in Abhängigkeit von Konsumgütern beschreibt. Mathematisch kann dies durch die Funktion U(x1,x2,…,xn)U(x_1, x_2, \ldots, x_n)U(x1​,x2​,…,xn​) dargestellt werden, wobei xix_ixi​ die Menge des i-ten Gutes ist. Zusätzlich werden in der Wohlfahrtsökonomie oft Umverteilungsmechanismen und deren Auswirkungen auf die allgemeine Wohlfahrt analysiert, um herauszufinden, wie soziale Gerechtigkeit und wirtschaftliche Effizienz in Einklang gebracht werden können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Tintenfisch-Magnetometer

Ein Squid Magnetometer ist ein hochsensitives Messinstrument zur Erfassung von magnetischen Feldern. Es basiert auf der Superconducting Quantum Interference Device (SQUID)-Technologie, die es ermöglicht, extrem kleine Magnetfelder zu detektieren, die oft im Nanotesla-Bereich liegen. Diese Geräte nutzen die quantenmechanischen Eigenschaften von supraleitenden Materialien, um Änderungen im Magnetfeld präzise zu messen.

Die Funktionsweise beruht darauf, dass ein supraleitender Ring, der mit zwei Josephson-Kontakten ausgestattet ist, eine empfindliche Reaktion auf magnetische Flüsse zeigt. Ein typisches Anwendungsspektrum umfasst die Geophysik, Materialwissenschaften und Medizin, insbesondere in der Magnetresonanztomographie (MRT). Die Fähigkeit, magnetische Felder mit hoher Genauigkeit zu messen, macht das Squid Magnetometer zu einem unverzichtbaren Werkzeug in der modernen Forschung und Industrie.

Photonische Kristallgestaltung

Das Design von photonischen Kristallen bezieht sich auf die gezielte Gestaltung von Materialien, die eine regelmäßige Struktur aufweisen und die Wechselwirkung von Licht mit Materie steuern können. Diese Kristalle haben eine periodische Anordnung von Materialien mit unterschiedlichen Brechungsindices, was zu einem Phänomen führt, das als Bandlücken bekannt ist. In diesen Bandlücken kann Licht bestimmter Frequenzen nicht propagieren, wodurch photonische Kristalle als Filter oder Wellenleiter fungieren.

Ein typisches Beispiel sind photonic crystal fibers, die durch ihr Design eine hochgradige Kontrolle über die Lichtausbreitung bieten. Die mathematische Beschreibung solcher Strukturen erfolgt oft durch die Lösung der Maxwell-Gleichungen, wobei die Strukturparameter wie Periodizität und Brechungsindex entscheidend sind. Die Anwendungsmöglichkeiten reichen von optischen Komponenten in der Telekommunikation bis hin zu Sensoren und Quantencomputing.

Thermoelektrische Materialeffizienz

Die Effizienz von thermoelektrischen Materialien wird durch ihre Fähigkeit bestimmt, Temperaturunterschiede in elektrische Energie umzuwandeln. Diese Effizienz wird oft durch den sogenannten Z-Parameter charakterisiert, der durch die Gleichung Z=S2σκZ = \frac{S^2 \sigma}{\kappa}Z=κS2σ​ definiert ist, wobei SSS die Seebeck-Koeffizienten, σ\sigmaσ die elektrische Leitfähigkeit und κ\kappaκ die thermische Leitfähigkeit darstellt. Ein höherer Z-Wert bedeutet eine bessere Effizienz des Materials. Thermoelektrische Materialien finden Anwendung in verschiedenen Bereichen, wie der Abwärmerückgewinnung oder in Kühlsystemen, und sind besonders interessant für die Entwicklung nachhaltiger Energietechnologien. Um die Effizienz zu maximieren, müssen Materialeigenschaften wie die elektrische Leitfähigkeit und die thermische Leitfähigkeit optimiert werden, sodass eine hohe elektrische Leistung bei gleichzeitig geringer Wärmeleitung erreicht wird.

Homomorphe Verschlüsselung

Homomorphic Encryption ist eine Form der Verschlüsselung, die es ermöglicht, Berechnungen auf verschlüsselten Daten durchzuführen, ohne diese vorher entschlüsseln zu müssen. Dies bedeutet, dass der Dateninhaber die Kontrolle über seine Daten behält, während Dritte Berechnungen durchführen können, ohne Zugang zu den tatsächlichen Informationen zu erhalten. Ein Beispiel für eine homomorphe Eigenschaft ist die additive Homomorphie, bei der die Verschlüsselung von zwei Zahlen xxx und yyy eine Verschlüsselung des Ergebnisses x+yx + yx+y ergibt. Mathematisch ausgedrückt könnte dies so aussehen:

E(x+y)=E(x)⊕E(y)E(x + y) = E(x) \oplus E(y)E(x+y)=E(x)⊕E(y)

wobei EEE die Verschlüsselungsfunktion und ⊕\oplus⊕ die Operation ist, die die Addition repräsentiert. Diese Technologie hat das Potenzial, die Datensicherheit in Bereichen wie Cloud-Computing und Datenschutz zu revolutionieren, da sie es Unternehmen ermöglicht, sensible Informationen zu verarbeiten, ohne diese zu gefährden.

Nanoimprint-Lithografie

Die Nanoimprint Lithography (NIL) ist ein innovatives Verfahren zur Herstellung nanoskaliger Strukturen, das in der Mikro- und Nanofabrikation eingesetzt wird. Bei dieser Technik wird ein präzise geformter Stempel auf eine dünne Schicht eines polymeren Materials gedrückt, wodurch die Struktur des Stempels auf das Substrat übertragen wird. Dieser Prozess geschieht in mehreren Schritten:

  1. Stempelerstellung: Ein Stempel mit der gewünschten Nanoskalastruktur wird hergestellt, oft durch Elektronenstrahllithografie.
  2. Präparation des Substrats: Eine dünne Schicht eines thermoplastischen oder UV-härtenden Polymers wird auf das Substrat aufgetragen.
  3. Imprint-Prozess: Der Stempel wird unter Druck auf das Polymer gepresst, wodurch es verformt wird und die Struktur des Stempels übernimmt.
  4. Aushärtung: Das Polymer wird dann ausgehärtet, um die Struktur zu fixieren.

Die NIL-Technik ermöglicht die Herstellung von hochpräzisen und kostengünstigen Nanostrukturen und findet Anwendung in verschiedenen Bereichen, einschließlich der Halbleiterindustrie, Optoelektronik und Biomedizin.

Transkranielle Magnetstimulation

Transkranielle Magnetstimulation (TMS) ist ein nicht-invasives Verfahren, das magnetische Felder nutzt, um neuronale Aktivität im Gehirn zu beeinflussen. Bei der TMS wird eine Spule auf die Kopfhaut platziert, durch die ein kurzer, starker elektrischer Impuls erzeugt wird. Dieser Impuls erzeugt ein Magnetfeld, das in das Gehirn eindringt und dort gezielt Nervenzellen stimuliert oder hemmt. TMS wird häufig in der Forschung und zunehmend auch in der klinischen Praxis eingesetzt, insbesondere zur Behandlung von Depressionen, Angststörungen und chronischen Schmerzen. Die Behandlung ist schmerzfrei und hat in der Regel nur wenige Nebenwirkungen, was sie zu einer attraktiven Option für Patienten macht, die auf herkömmliche Therapien nicht ansprechen.